' science education.' Search Results
Fostering Mathematical Creativity in Primary Education: Impact of an Educational Program on Teachers’ Classroom Practices
classroom observation creativity-provoking tasks intervention mathematical creativity teachers’ practices...
Research consistently highlights the importance of promoting creativity in curricula worldwide and within school settings. However, teachers often fail to recognize mathematical creativity (mainly described and evaluated through fluency, flexibility, originality, and elaboration) and are usually ill-prepared to enhance it in their students. Few studies have incorporated educational programs focused on mathematical creativity, showing positive results in enriching participants' knowledge and perception of creativity. Nevertheless, participants' teaching practices were not observed, leading to uncertainty about whether these participants could integrate opportunities for students’ development of mathematical creativity in their lessons. In this qualitative study, we attempt to bridge this gap by observing teachers' practices before and after an intervention focused on mathematical creativity. Seven in-service primary school Greek teachers participated in the study. Their teaching practices were examined through classroom observation, using an observation protocol, before and after their voluntary participation in an educational program aimed at enriching their knowledge of mathematical creativity and their ability to cultivate it in the classroom. Observational data were coded and analyzed using thematic analysis. Results showed that prior to the intervention, participants sparsely employed creativity-fostering approaches in their teaching. However, after the intervention, they significantly increased the time spent on creativity-provoking tasks, utilizing various creativity-promoting approaches and primarily focusing on developing fluency, flexibility, and generating new knowledge. Nevertheless, they did not significantly develop their skills in originality and elaboration, indicating the need for further support in cultivating these aspects of creativity. Future implications for professional teacher training and mathematics textbook writing are discussed.
0
Storytelling: A Teaching Technique to Infuse Indigenous Knowledge in Physical Science Pre-service Teacher Training
indigenous knowledge participatory action and learning research physical science project-based - and contextualised learning storytelling...
The infusion of indigenous knowledge in academic subjects is often problematic due to personal perceptions or little experience with indigenous knowledge in a teaching and learning environment. The aim of the research was to indicate the experiences of pre-service teachers when infusing indigenous knowledge via storytelling in Physical Science. This article reports on the personal experience(s) of pre-service teachers in training at a higher education institution where indigenous knowledge was infused into the teaching and learning of Physical Sciences. The implementation of Ethnophysics as a teaching strategy, storytelling as a teaching technique, contextualised - and project-based learning as teaching methods and approaches and reflection on experiences when implementing participatory action learning and action research indicated a transformative way to embrace indigenous knowledge in the teaching and learning of Physical Science. Stories, related to the concept of heat in physical science were collected by the pre-service teachers from trusted adult members in their local communities. The pre-service teachers analysed the stories and reported their interpretation of scientific and indigenous knowledge in the stories. Inductive, thematic analysis was used to interpret pre-service teacher reflection on the experience and the Cultural Historical Activity Theory was used to indicate an overview and the connection between different elements of the research. The participating pre-service teachers indicated that storytelling, as a teaching technique, adds value to how they interpret concepts in Physical Science related to their unique culture. The pre-service teachers gained research skills regarding qualitative research and showed the ability to identify the contribution of both scientific and indigenous knowledge.
0
An Examination of the Interaction in Online Professional Development for Area Specialized Teaching
interaction mentor teachers online professional development (opd) science education teacher professional development...
This study explores how mentor teachers in specialized teaching areas, particularly chemistry, interact in an Online Professional Development (OPD) program. The Mentor Teacher Professional Development (MeT-PD) program was designed to improve mentoring practices by creating opportunities for collaborative learning through various online activities, such as Individual Response (IR), Interactive Individual Response (IIR), Small Group Discussions (SGD), and Large Group Discussions (LGD). Using a qualitative case study approach, the research analyzed data collected from Zoom recordings and Nearpod activity logs. The findings indicate that while LGDs were useful for interactions between facilitators and learners, they were not as effective in fostering interaction among learners themselves, mainly due to the cognitive demands and how these discussions were structured. On the other hand, SGDs seemed to foster stronger participant interaction, probably because the smaller group settings led to more valuable exchanges. These findings highlight the need of thoughtful planning of OPD activities, with particular focus on group size management and selection of suitable discussion formats to improve both interaction and learning outcomes.
0
Analysis of Students’ Academic Performance in Mathematics Across Specific Topic Areas in Selected Lower Secondary Schools in Rwanda
lower secondary schools mathematics performance quantitative research topic-based analysis...
In this study, a topic-based analysis of students’ academic performance in mathematics across specific topic areas in selected lower secondary schools in Rwanda was conducted. The research examined third-term exam scripts (2022-2023 and 2023-2024) of 267 Senior One (S1) and Senior Two (S2) students at Groupe Scolaire Rushara, Groupe Scolaire Sheli, and Groupe Scolaire Nyarugugu, along with data from their eight mathematics teachers. A quantitative approach was employed using ANOVA to compare students’ performance across five key mathematics topics: algebra, metric measurement, proportional reasoning, geometry, and statistics and probability. The findings revealed significant improvement in statistics and probability (p =.000, η² = 0.293) and geometry (p =.000, η² = 0.178) between S1 and S2 students. In contrast, metric measurement showed no significant difference (p =.234, η² = 0.003), while algebra demonstrated minimal improvement (p =.050, η² = 0.007). Proportional reasoning showed moderate progress (p =.000, η² = 0.057), although students continued to struggle with applying proportional relationships. These results indicate that while notable gains were made in some areas, others require targeted pedagogical interventions to improve students’ conceptual understanding and performance in mathematics. The study underscores the importance of adaptive teaching strategies, enhanced instructional materials, and a more student-centered approach to mathematics education in lower secondary schools in Rwanda.
0
Assessment Practices of Ghanaian Senior High School Mathematics Teachers: A National Survey of Practices, Self-Rated Skills, and Predictors
assessment ghana mathematics education secondary school...
This study investigates the assessment practices of senior high school mathematics teachers in Ghana, examining both the dominant classroom methods and teachers’ self-rated assessment skills, as well as the extent to which teacher background characteristics are associated with these practices. Drawing on a national survey of 516 teachers, the results show a strong reliance on traditional paper-and-pencil tests, with high self-reported confidence in administering such assessments. Formative and data-driven practices, including the use of standardized test data and diagnostic assessment, remain infrequently implemented and are associated with lower self-assessed competence. Multiple regression analysis revealed that participation in assessment-focused professional development was the only significant predictor of both broader assessment practice and higher perceived assessment skill, while years of teaching experience, gender, WAEC examining roles, and academic qualifications were not significantly associated. These findings underscore the importance of targeted professional development in strengthening assessment literacy and highlight persistent gaps between policy intentions and classroom realities. The study recommends sustained, context-relevant training to promote more effective and varied assessment practices in mathematics education.
0
Differentiated Assessment Strategies: Best Practices in a Multi-Level Learning Manitoban Classroom
differentiated assessment strategies diverse learners inclusive classroom differentiating curriculum change motivation...
Introduction: This study explores the effectiveness of differentiated assessment as a strategy to support diverse learners in multi-level K–12 classrooms in Manitoba, Canada. Literature Review: Articles published from 2005 onward were sourced from ProQuest, ERIC, Google Scholar, ResearchGate, and Taylor & Francis databases. Methodology: A qualitative document review was employed by analyzing peer-reviewed articles. The review investigates how differentiated assessment practices, such as varied formats, flexible timing, assistive technologies, and constructive feedback, enable educators to identify students’ strengths, interests, and learning needs. Insights inform the adaptation of instructional plans to accommodate diverse learning styles and promote academic equity. Findings and conclusions reveal that while differentiated assessment fosters inclusivity and meaningful evaluation, implementation is hindered by challenges, including limited resources, insufficient teacher training, time constraints, and resistance to change. The findings contribute to ongoing discourse on equitable assessment practices and offer practical implications for enhancing student success in diverse educational settings. Recommendations: The study recommends targeted professional development, increased teacher autonomy, and collaborative efforts among educators and administrators to address these barriers.
0
Grade Level and Gender Perspectives: Middle Grade Mathematics Affect and Identity Stabilization
identity theory mathematical affect middle grade mathematical identity middle grade mathematics education...
Data from over 1,500 middle-grade mathematics students were used to investigate their mathematical affect and identity. Early secondary students were asked if they considered themselves mathematicians and a prompt was employed to substantiate their mathematical identity. Separating by gender and grade affiliation (6, 7, and 8), Chi-square and Z-score analyses were used to compare subgroups. Data show that the gap in male and female mathematics identity and affect is shrinking. Though progress has occurred in encouraging young women to consider themselves mathematicians, work remains. Consistent with previous research concerning the sustained and relatively permanent nature of mathematical affect/identity at grade six, in this study it appeared to become stable near grade 7 (approximately age 13). Perhaps not ironically, grade seven appears to be the age at which adolescents enter a period of successful abstract reasoning, and the age (13) aligns with the beginning of pre-algebra for many grades seven students.
0
Developing Spatial Ability through Ethnomathematics-Based Project Learning: A Geometry Study on Pre-Service Mathematics Teachers
ethnomathematics geometry education pre-service teachers project-based learning spatial ability...
Spatial ability is a fundamental component in geometry learning and a critical skill for prospective mathematics teachers. However, traditional instructional methods often fall short in fostering students’ spatial reasoning, especially in higher education contexts. This study aimed to investigate the effect of an instructional model integrating Project-Based Learning (PjBL) with ethnomathematics on the spatial ability of pre-service mathematics teachers. Employing a quasi-experimental one-group pretest–posttest design, the study involved 30 participants who received geometry instruction through PjBL with cultural integration. The findings revealed a substantial improvement in students’ spatial ability, indicating that the intervention was both effective and meaningful. The integration of culturally grounded projects enhanced students’ visualization, mental rotation, and engagement. These results support the use of ethnomathematics-based PjBL as an innovative and contextually relevant approach to improving spatial reasoning in mathematics teacher education. Future research is recommended to investigate the long-term effects and adaptability of this model in various educational settings.
0
Perceived Benefits and Challenges of Leveraging Artificial Intelligence in Transforming Science Education in Public Universities in Kogi State, Nigeria
artificial intelligence ai literacy public universities science education...
This study assessed the benefits and challenges of leveraging artificial intelligence in transforming science education in public universities in Kogi State, Nigeria. The population of this study comprises 52 science educators from the four public universities in Kogi State, Nigeria. There was no sampling since the population was manageable. The study adopted a descriptive survey research design. The instrument used for data collection was an online Google Form survey questionnaire titled Benefit and Challenges of Leveraging Artificial Intelligence Questionnaire (BCLAIQ). BCLAIQ contained 36 items and underwent trial testing. Cronbach’s alpha was used to analyze the reliability value, which yielded a value of .87. Three research questions and three null hypotheses guided the study. Mean and standard deviation scores were used to answer the research questions, while inferential statistics, specifically the t-test, were used to test the null hypotheses. The study revealed that there is no significant difference between the mean ratings of male and female respondents’ opinions on the benefits and challenges of leveraging artificial intelligence in transforming science education, respectively {t = 1.98, df =50, p > .05} {t = 1.83, df = 50, p > .05}. Thus, it was recommended, among other things, that government university administrators and relevant stakeholders should subsidize, partner with tech companies, and invest in AI-powered technologies. University administrators and relevant stakeholders should prioritize AI literacy and ethics by providing diverse professional staff training on AI fundamentals.
0