logo logo European Journal of Mathematics and Science Education

EJMSE is a leading, peer-reviewed research journal based in the UK that provides an online forum for studies in mathematics and science education.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

'teacher knowledge' Search Results

...

This paper aims to examine the trends around research in science teaching following the outbreak of the COVID-19 pandemic. This event had a significant impact on education institutions, as it led to the shift to online learning that challenged educators in terms of planning, implementing, and dealing with issues such as the deteriorating mental and physical health of students. This is reflected in the trends of researchers. Contemporary trends around science teaching seem to focus on new teaching practices, modes, areas of investigation, and the impact of modern technology. However, there is limited bibliometric research examining the impact of COVID-19 on science teaching. Hence, 12,840 documents published from 2020 onwards were collected and analyzed from the Scopus platform. The analysis depicted a general interest of researchers around this topic. Findings regarding the focus and area of study, country, and the yearly rate of publication are aligned with those that focus on the individual impact of the COVID-19 pandemic on teaching and science education. This can give insights to the general trends regarding the future of science teaching.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.67
Pages: 67-79
cloud_download 220
visibility 1010
0
Article Metrics
Views
220
Download
1010
Citations
Crossref
0

...

This paper derives from a large research project focusing on mathematics and science assessment of student learning in three high-need, rural, and urban secondary schools in Manitoba, Canada. The study employed qualitative methods of semi-structured interviews and classroom video recordings of teaching practice experiences of 12 mathematics and science teachers, with the purpose that explore how authentic assessment forms assist effective teaching to monitor and motivate student learning achievement and growth. The results indicate that about 67% (eight out of the twelve of the participants) of the research participants practice the traditional mode of standard assessment that consists of multiple forms of questioning. The participants' rationale relates to speedy evaluations of student work, preparing feedback reports to parents and students, and objectivity of the assessment process. The other 33% (four out of twelve of the participants) of participants practice authentic assessment that concentrates on: (1) Allowing students to apply what they have learned rather than testing their ability to memorize and regurgitate concepts, (2) Allowing students to personalize their knowledge and values, (3) Encouraging group project-based learning and with the use of rubric for evaluating and monitoring, (4) Promoting deep learning to become life-long learners, (5) Recognizing, acknowledging, and validating diversity in student learning styles, interests, and aspirations, and further, authentic assessment is an excellent opportunity to apply communicative technologies such as podcasts and webinars in learning and undertaking investigations in mathematics and science learning. Furthermore, some participants asserted that authentic assessments are time-consuming, labor-intensive, and resource-demanding, aside from the limited resources and lack of training, which are some of the challenges of implementing authentic assessment. Other participants stated that all teachers must be familiar with using all assessment tools. The paper concludes that the principal plays a critical instructional leadership role in a school-wide implementation of authentic assessment.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.93
Pages: 93-104
cloud_download 249
visibility 1418
3
Article Metrics
Views
249
Download
1418
Citations
Crossref
3

Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues

big science covid-19 learning enjoyment learning interest socio-scientific issues

Brady Michael Jack , Chi-Chen Chen , Hsin-Hui Wang , Thomas J. Smith


...

Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.121
Pages: 121-133
cloud_download 195
visibility 997
0
Article Metrics
Views
195
Download
997
Citations
Crossref
0

...

Recent studies in mathematics education have focused on students' geometric problem-solving abilities, self-regulation, and the problem-based learning (PBL) model. The goal of this study is to examine how well junior high school students' self-regulation and geometric problem-solving skills are enhanced by the PBL model. In this study, quantitative methods using a quasi-experimental design were used. The sample consisted of 45 students from Amanatul Ummah junior high school in Mojokerto, Indonesia. Five types of instruments were utilized to collect data for this research, namely Syllabus, lesson plans, student worksheets, Self-Regulation Questionnaire (SRQ), and Geometry Problem-solving Test (GPST). The outcomes of the N-Gain test demonstrated how well the PBL model works to help students develop their capacity for self-regulation and geometric problem-solving. Apart from that, there are some notable differences between the traditional technique and the experimental class that is taught using the PBL paradigm. It is advised that similar trials be conducted in the future with a larger population and sample size. In both public and private junior high schools, it is strongly advised that more research be done with a larger population and sample size. Future researchers can also expand the study materials of geometry, not only to flat-sided geometric shapes but even further to curved-sided geometric shapes and also other subject matters.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.135
Pages: 135-145
cloud_download 261
visibility 2007
0
Article Metrics
Views
261
Download
2007
Citations
Crossref
0

...

This study compares experts' and teachers' conceptualization of pedagogical content knowledge (PCK). The study participants included teachers (n=20) enrolled in a graduate mathematics education course on PCK. Participants responded to two open-ended questions: a) describe in your own words what PCK is; b) provide an example of PCK. The responses were collected, qualitatively and quantitatively analyzed, and then compared to those suggested by experts to identify and describe the similarities and differences between teachers’ and experts’ conceptualizations using the Pareto analysis. Experts’ and teachers’ PCK components ranking was analyzed using the nonparametric Mann-Whitney U test. Even though the results of the quantitative analysis were not significant (e.g., the observed U-value is 32 whereas the critical value of U at p < .05 is 13), the qualitative discussion on the differences between expert and teachers’ ranking suggests insightful interpretation of priorities among PCK components across the two groups.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.147
Pages: 147-166
cloud_download 157
visibility 823
0
Article Metrics
Views
157
Download
823
Citations
Crossref
0

Dialogic Scaffolding: How to Design Critical Questions in Developing Students Algebraic Reasoning?

algebraic reasoning critical questions scaffolding dialogue

Mochamad Abdul Basir , Imam Kusmaryono , Hevy Risqi Maharani


...

Scaffolding dialogue is a concept in learning that refers to the support or assistance given to individuals during the dialogue process. The main objective of this research is to create a basic structure of dialogue to help and support students during the learning process in improving their algebraic reasoning skills. Algebraic reasoning is a process in which students generalize mathematical ideas from a certain set of examples, establish these generalizations through argumentative discourse, and express them in a formal and age-appropriate way. The study was designed using the grounded theory qualitative model method, which used three sequential steps: open coding, selective coding, and theoretical coding. The research was conducted on students of the mathematics education department at Universitas Islam Sultan Agung. Data collection methods include algebraic reasoning ability tests, questionnaires, and interviews. Data analysis in grounded theory is an iterative and non-linear process that requires researchers to constantly move back and forth between data collection and analysis. This process aims to produce a theory that is valid and can explain phenomena well based on empirical data obtained during research. The dialogue scaffolding strategy framework in improving students' algebraic reasoning abilities includes instructing, locating, identifying, modeling, advocating, exploring, reformulating, challenging, and evaluating.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.167
Pages: 167-184
cloud_download 194
visibility 1362
0
Article Metrics
Views
194
Download
1362
Citations
Crossref
0

...

We aimed to explore how Early Childhood (EC) preservice teachers (PSTs) choose and apply content-specific mathematics and science standards by analyzing two sets of lesson plans and two transcripts from whole class discussions from an EC mathematics and science methods course. From our analyses, we identified major themes and explanatory categories that indicated issues related to PSTs’ standards selection process. Students’ reasoning about their choices illustrated the resiliency of their beliefs about teaching and learning EC mathematics and science, and how their own observation experiences prevailed over our explicit instruction and assignment expectations. Drawing from literature related to Lortie’s (1975) Apprenticeship of Observation, we use our findings to consider ways to better appreciate and mitigate the strength of PSTs’ incoming beliefs on their readiness to plan for and implement lessons. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.201
Pages: 201-211
cloud_download 97
visibility 783
0
Article Metrics
Views
97
Download
783
Citations
Crossref
0

...

Understanding and handling diversity, as well as inclusion, are critical in ensuring effective teaching and learning, especially in the mathematics classroom, where students have varied abilities. Despite the growing research in inclusive education, little is known about how mathematics teachers in the Ghanaian context understand the theory of multiple intelligences (MIs), leaving a gap in how this theory can be applied in the classroom to improve practice and inclusion. In this study, the authors explored Ghanaian mathematics teachers’ conceptions of the theory of MIs using a basic qualitative method design. 12 senior high school mathematics teachers in one municipality of Ghana were engaged through questionnaires and semi-structured interviews, including field notes, to provide information on their conceptions of the theory of MIs. Thematic analysis revealed that mathematics teachers conceived the theory of MIs as a theory of different styles for learning, multiple teaching strategies, and a theory for catering to diverse student needs. The findings highlight the need for professional development and teacher training curriculum development to enhance teachers' understanding of the theory of MIs to improve their practice and handling of inclusiveness and diversity in the classroom.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.213
Pages: 213-225
cloud_download 139
visibility 933
0
Article Metrics
Views
139
Download
933
Citations
Crossref
0

...

This study investigated the integration of artificial intelligence (AI) tools into secondary school chemistry education in Zimbabwe, assessing their impact on student engagement and academic performance. Grounded in Vygotsky’s Sociocultural Theory and Cognitive Load Theory, the research employed a mixed-methods approach within a pragmatic framework. Quantitative data were collected through pre-test and post-test assessments and structured surveys, comparing an experimental group using AI tools with a control group employing traditional methods. Qualitative data from student and teacher interviews and classroom observations were analysed thematically. ANCOVA analysis revealed a statistically significant difference in post-test scores between the experimental and control groups, F (1, 117) = 188.86, p < .005, η² = 0.617, demonstrating a large effect size of AI integration on academic performance. Students in the experimental group exhibited a mean improvement of 20%, controlling for pre-test differences. Additionally, interaction effects between AI use and gender (F (1,115) = 0.17, p = .684) as well as prior chemistry knowledge (F (1,115) = 0.05, p = .829) were not statistically significant. Furthermore, 85% of the experimental group reported higher engagement levels, confirming AI’s role in fostering motivation and conceptual understanding. AI tools facilitated personalized learning paths, interactive simulations, and real-time feedback, optimizing cognitive efficiency and deep learning. Despite these advantages, significant challenges emerged, including limited internet access, insufficient technological resources, lack of teacher training, and curriculum integration difficulties. These barriers highlight the need for strategic investments in digital infrastructure, professional development for educators, and curriculum revisions to fully integrate AI into chemistry education. The findings underscore AI’s transformative potential in STEM education within developing nations. Addressing infrastructural and pedagogical challenges is critical to maximizing AI's impact, ensuring equitable access, and fostering long-term sustainability in educational innovation.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.1
Pages: 1-15
cloud_download 161
visibility 1010
0
Article Metrics
Views
161
Download
1010
Citations
Crossref
0

Effects of Mathematics Teaching Styles on Students’ Performance: Moderations of Gender, School Type, Location, and Ability Group

achievement considerateness openness rigid teaching styles

Bishnu Khanal , Shashidhar Belbase , Binod Babu Dhakal , Bed Raj Acharya , Mukunda Prakash Kshetree , Ram Krishna Panthi , Maxwell Peprah Opoku


...

Global concern surrounds students' mathematics learning, development, and achievement. Scholarly discussions have explored various factors influencing students' mathematics performance. However, more information is needed to understand the impact of mathematics teaching styles on student outcomes in developing contexts like Nepal. This study examines the moderators of mathematics teaching styles and their influence on students' performance. To achieve this, the Teachers' Teaching Style Questionnaire (TTSQ) collected quantitative data from 469 grade nine students across 14 high schools in Kathmandu, Lalitpur, and Bhaktapur districts of Nepal. Confirmatory factor analysis, path analysis, and moderation analysis were performed to examine the effects of teaching styles on student achievement in mathematics. Key findings indicate that teaching styles, such as consideration and openness, are not significant predictors of student achievement, but rigid teaching styles can predict student achievement in mathematics. However, impact of the rigid teaching style was negative on student achievement. School type influenced the relationship between performance and considerate teaching, favoring private schools. School location influenced the relationship between considerate teaching and student performance in mathematics, favoring rural schools. Likewise, urban schools had a negative effect on the relationship between teacher openness and student performance, but rural schools had a positive effect on their relationship. Furthermore, low and high-ability students moderated the relationship between considerate teaching and student achievement, with the negative effect of low ability on considerate teaching and student performance and the positive influence of high ability on considerate teaching and student achievement. Student ability influenced the relationship between teacher openness and student performance, with a negative moderations of low and moderate ability students. The study concludes by emphasizing the importance of teacher training in teaching styles for high schools in Nepal and similar contexts.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.33
Pages: 33-49
cloud_download 117
visibility 735
0
Article Metrics
Views
117
Download
735
Citations
Crossref
0

...

Comparison of mathematics textbooks between Indonesia and Singapore is one way to assess the educational process. This article provides insight into how mathematical concepts are taught and applied in problem-solving in each country. The study provides knowledge about how mathematical concepts are constructed by teachers and students and implemented in problem-solving between countries. This study aims to compare task designs in high school mathematics textbooks between Indonesia and Singapore based on the type of task, technique, technology, and theory used, with a focus on cubes and cuboids. The comparative analysis of the two books uses praxeological theory, the main construction of Didactic Anthropology Theory, with reference to epistemological model (REM) model analysis. The research results show that there are differences in the approaches, methods, and habits used in task design in the two countries. The techniques, technology and theories found in the two task designs show that Indonesian mathematics textbooks use more verification and drawing up conclusions which are influenced by perceptual techniques. Meanwhile, the task of designing Singapore's mathematics textbooks involves more direct investigations into forming students' knowledge through physical and operational techniques. The techniques, technology, and theories used in both designs influence the number of learning obstacles. Epistemological constraints occur in Indonesian textbooks and only a few in Singapore textbooks. These findings provide insight into how to build mathematical knowledge for students through good assignment design based on a country's educational character.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.65
Pages: 65-78
cloud_download 94
visibility 768
0
Article Metrics
Views
94
Download
768
Citations
Crossref
0

...

This study examines the validity of the Force Concept Inventory (FCI) in Ugandan secondary schools using Item Response Curves (IRCs) and provides a comparative evaluation of its effectiveness across different educational contexts. The survey focused on Senior Four students preparing for the Uganda Certificate of Education (UCE) examinations, with a representative sample of 941 students (aged 15–17) selected through a multi-stage sampling technique. The initial analysis employed Classical Test Theory (CTT) metrics before the detailed analysis of IRCs for the FCI items. The CTT evaluates item-level and whole test statistics like item difficulty level, discrimination index, and reliability. The CTT indices revealed that the FCI was highly challenging, with an average score of 5.76 out of 30 and a low-reliability coefficient (α = 0.15). Additionally, 73.3% of the items showed poor discrimination, and some distractors were ineffective. The detailed analysis of IRCs showed that several FCI items are inefficient in the context of the Ugandan education system. The IRCs also demonstrated a widespread choice of distractors for many items, with overall scores falling below the threshold indicative of a generally agreed-upon understanding of Newtonian physics. Comparative analysis from other global contexts studies suggests that language barriers, curriculum differences, and instructional methods influence student performance. These findings underscore the necessity of adapting the FCI tool to better fit local educational contexts and implementing additional instructional strategies to enhance conceptual understanding. A more culturally and contextually adapted diagnostic tool may improve physics education and better assess students’ conceptual comprehension of force and motion within the region.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.79
Pages: 79-95
cloud_download 122
visibility 789
0
Article Metrics
Views
122
Download
789
Citations
Crossref
0

...

Research consistently highlights the importance of promoting creativity in curricula worldwide and within school settings. However, teachers often fail to recognize mathematical creativity (mainly described and evaluated through fluency, flexibility, originality, and elaboration) and are usually ill-prepared to enhance it in their students. Few studies have incorporated educational programs focused on mathematical creativity, showing positive results in enriching participants' knowledge and perception of creativity. Nevertheless, participants' teaching practices were not observed, leading to uncertainty about whether these participants could integrate opportunities for students’ development of mathematical creativity in their lessons. In this qualitative study, we attempt to bridge this gap by observing teachers' practices before and after an intervention focused on mathematical creativity. Seven in-service primary school Greek teachers participated in the study. Their teaching practices were examined through classroom observation, using an observation protocol, before and after their voluntary participation in an educational program aimed at enriching their knowledge of mathematical creativity and their ability to cultivate it in the classroom. Observational data were coded and analyzed using thematic analysis. Results showed that prior to the intervention, participants sparsely employed creativity-fostering approaches in their teaching. However, after the intervention, they significantly increased the time spent on creativity-provoking tasks, utilizing various creativity-promoting approaches and primarily focusing on developing fluency, flexibility, and generating new knowledge. Nevertheless, they did not significantly develop their skills in originality and elaboration, indicating the need for further support in cultivating these aspects of creativity. Future implications for professional teacher training and mathematics textbook writing are discussed.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.97
Pages: 97-112
cloud_download 100
visibility 585
0
Article Metrics
Views
100
Download
585
Citations
Crossref
0

...

The infusion of indigenous knowledge in academic subjects is often problematic due to personal perceptions or little experience with indigenous knowledge in a teaching and learning environment. The aim of the research was to indicate the experiences of pre-service teachers when infusing indigenous knowledge via storytelling in Physical Science. This article reports on the personal experience(s) of pre-service teachers in training at a higher education institution where indigenous knowledge was infused into the teaching and learning of Physical Sciences. The implementation of Ethnophysics as a teaching strategy, storytelling as a teaching technique, contextualised - and project-based learning as teaching methods and approaches and reflection on experiences when implementing participatory action learning and action research indicated a transformative way to embrace indigenous knowledge in the teaching and learning of Physical Science. Stories, related to the concept of heat in physical science were collected by the pre-service teachers from trusted adult members in their local communities. The pre-service teachers analysed the stories and reported their interpretation of scientific and indigenous knowledge in the stories. Inductive, thematic analysis was used to interpret pre-service teacher reflection on the experience and the Cultural Historical Activity Theory was used to indicate an overview and the connection between different elements of the research. The participating pre-service teachers indicated that storytelling, as a teaching technique, adds value to how they interpret concepts in Physical Science related to their unique culture. The pre-service teachers gained research skills regarding qualitative research and showed the ability to identify the contribution of both scientific and indigenous knowledge.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.113
Pages: 113-126
cloud_download 83
visibility 566
0
Article Metrics
Views
83
Download
566
Citations
Crossref
0

...

For decades, a global trend in mathematics curriculum development has placed greater emphasis on learning goals that seek to capture different kinds of processes that students should master. For Danish primary and secondary mathematics education, these ambitions are expressed in terms of a set of mathematical competencies, in line with the so-called KOM framework. However, it has proved challenging to implement the competencies in mathematics classrooms and actual teaching practice. Matematrix is a series of Danish mathematics textbooks for grades K-9 designed to support mathematics teachers in facing this challenge. Following a short introduction to the KOM framework, I – as one of the designers and authors of the textbooks – present a key element in this endeavour: A three-dimensional model of content and objectives combining mathematical competencies, mathematical core concepts and grade levels. I then describe the use of this model in the specific case of Matematrix at three different levels of textbook design: The structure of the general content of the books, the focal points for each chapter, and the development of different kinds of tasks for the students to work with.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.127
Pages: 127-135
cloud_download 61
visibility 428
0
Article Metrics
Views
61
Download
428
Citations
Crossref
0

...

This study explores how mentor teachers in specialized teaching areas, particularly chemistry, interact in an Online Professional Development (OPD) program. The Mentor Teacher Professional Development (MeT-PD) program was designed to improve mentoring practices by creating opportunities for collaborative learning through various online activities, such as Individual Response (IR), Interactive Individual Response (IIR), Small Group Discussions (SGD), and Large Group Discussions (LGD). Using a qualitative case study approach, the research analyzed data collected from Zoom recordings and Nearpod activity logs. The findings indicate that while LGDs were useful for interactions between facilitators and learners, they were not as effective in fostering interaction among learners themselves, mainly due to the cognitive demands and how these discussions were structured. On the other hand, SGDs seemed to foster stronger participant interaction, probably because the smaller group settings led to more valuable exchanges. These findings highlight the need of thoughtful planning of OPD activities, with particular focus on group size management and selection of suitable discussion formats to improve both interaction and learning outcomes.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.137
Pages: 137-146
cloud_download 88
visibility 388
0
Article Metrics
Views
88
Download
388
Citations
Crossref
0

...

In this study, a topic-based analysis of students’ academic performance in mathematics across specific topic areas in selected lower secondary schools in Rwanda was conducted. The research examined third-term exam scripts (2022-2023 and 2023-2024) of 267 Senior One (S1) and Senior Two (S2) students at Groupe Scolaire Rushara, Groupe Scolaire Sheli, and Groupe Scolaire Nyarugugu, along with data from their eight mathematics teachers. A quantitative approach was employed using ANOVA to compare students’ performance across five key mathematics topics: algebra, metric measurement, proportional reasoning, geometry, and statistics and probability. The findings revealed significant improvement in statistics and probability (p =.000, η² = 0.293) and geometry (p =.000, η² = 0.178) between S1 and S2 students. In contrast, metric measurement showed no significant difference (p =.234, η² = 0.003), while algebra demonstrated minimal improvement (p =.050, η² = 0.007). Proportional reasoning showed moderate progress (p =.000, η² = 0.057), although students continued to struggle with applying proportional relationships. These results indicate that while notable gains were made in some areas, others require targeted pedagogical interventions to improve students’ conceptual understanding and performance in mathematics. The study underscores the importance of adaptive teaching strategies, enhanced instructional materials, and a more student-centered approach to mathematics education in lower secondary schools in Rwanda.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.3.147
Pages: 147-159
cloud_download 31
visibility 220
0
Article Metrics
Views
31
Download
220
Citations
Crossref
0

...

This study investigates the assessment practices of senior high school mathematics teachers in Ghana, examining both the dominant classroom methods and teachers’ self-rated assessment skills, as well as the extent to which teacher background characteristics are associated with these practices. Drawing on a national survey of 516 teachers, the results show a strong reliance on traditional paper-and-pencil tests, with high self-reported confidence in administering such assessments. Formative and data-driven practices, including the use of standardized test data and diagnostic assessment, remain infrequently implemented and are associated with lower self-assessed competence. Multiple regression analysis revealed that participation in assessment-focused professional development was the only significant predictor of both broader assessment practice and higher perceived assessment skill, while years of teaching experience, gender, WAEC examining roles, and academic qualifications were not significantly associated. These findings underscore the importance of targeted professional development in strengthening assessment literacy and highlight persistent gaps between policy intentions and classroom realities. The study recommends sustained, context-relevant training to promote more effective and varied assessment practices in mathematics education.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.3.161
Pages: 161-177
cloud_download 65
visibility 480
0
Article Metrics
Views
65
Download
480
Citations
Crossref
0

...