'assessment' Search Results
Authentic Assessment for Motivating Student Learning and Teaching Effectiveness in Rural, High-Need Secondary Schools in Manitoba, Canada
authentic assessment conventional assessments instructional leadership investigative mathematics science learning...
This paper derives from a large research project focusing on mathematics and science assessment of student learning in three high-need, rural, and urban secondary schools in Manitoba, Canada. The study employed qualitative methods of semi-structured interviews and classroom video recordings of teaching practice experiences of 12 mathematics and science teachers, with the purpose that explore how authentic assessment forms assist effective teaching to monitor and motivate student learning achievement and growth. The results indicate that about 67% (eight out of the twelve of the participants) of the research participants practice the traditional mode of standard assessment that consists of multiple forms of questioning. The participants' rationale relates to speedy evaluations of student work, preparing feedback reports to parents and students, and objectivity of the assessment process. The other 33% (four out of twelve of the participants) of participants practice authentic assessment that concentrates on: (1) Allowing students to apply what they have learned rather than testing their ability to memorize and regurgitate concepts, (2) Allowing students to personalize their knowledge and values, (3) Encouraging group project-based learning and with the use of rubric for evaluating and monitoring, (4) Promoting deep learning to become life-long learners, (5) Recognizing, acknowledging, and validating diversity in student learning styles, interests, and aspirations, and further, authentic assessment is an excellent opportunity to apply communicative technologies such as podcasts and webinars in learning and undertaking investigations in mathematics and science learning. Furthermore, some participants asserted that authentic assessments are time-consuming, labor-intensive, and resource-demanding, aside from the limited resources and lack of training, which are some of the challenges of implementing authentic assessment. Other participants stated that all teachers must be familiar with using all assessment tools. The paper concludes that the principal plays a critical instructional leadership role in a school-wide implementation of authentic assessment.
3
Use of Magic Tricks as Analogies in the Science Classroom
analogies magic tricks science instruction...
Science, magic, and education have always been linked, from science-based magic shows to teachers presenting demonstrations as magic tricks to capture their students’ interest and provide a mnemonic reference for the topics under discussion. Magic as an art form is also often used to convey information or act as an analogy for invisible phenomena. This study examined how the use of a magic effect designed as an analogy for active and passive transport in cells affected student scores and perception of the activity when compared to a standard story analogy in a high school integrated science course. To determine this, students participated in either a magic-based analogy activity (MBAA) or a concrete story-based analogy activity (SBAA), and then data was collected and analysed using a pre-test/post-test for the content and a Likert-scale anonymous survey for the student perception of the activity. The MBAA was shown to be similar to the SBAA in helping students learn but had the added benefit of increasing students’ reported engagement with the activity. This study shows how bringing magic into the science classroom can have a positive impact on student engagement and provides teachers with another option to support student learning.
0
Effectiveness of the Problem Based Learning Model to Improve Self-Regulation and Geometry Problem-solving Abilities of Junior High School Students
effectiveness problem-based learning self-regulation problem-solving ability geometry...
Recent studies in mathematics education have focused on students' geometric problem-solving abilities, self-regulation, and the problem-based learning (PBL) model. The goal of this study is to examine how well junior high school students' self-regulation and geometric problem-solving skills are enhanced by the PBL model. In this study, quantitative methods using a quasi-experimental design were used. The sample consisted of 45 students from Amanatul Ummah junior high school in Mojokerto, Indonesia. Five types of instruments were utilized to collect data for this research, namely Syllabus, lesson plans, student worksheets, Self-Regulation Questionnaire (SRQ), and Geometry Problem-solving Test (GPST). The outcomes of the N-Gain test demonstrated how well the PBL model works to help students develop their capacity for self-regulation and geometric problem-solving. Apart from that, there are some notable differences between the traditional technique and the experimental class that is taught using the PBL paradigm. It is advised that similar trials be conducted in the future with a larger population and sample size. In both public and private junior high schools, it is strongly advised that more research be done with a larger population and sample size. Future researchers can also expand the study materials of geometry, not only to flat-sided geometric shapes but even further to curved-sided geometric shapes and also other subject matters.
0
Dialogic Scaffolding: How to Design Critical Questions in Developing Students Algebraic Reasoning?
algebraic reasoning critical questions scaffolding dialogue...
Scaffolding dialogue is a concept in learning that refers to the support or assistance given to individuals during the dialogue process. The main objective of this research is to create a basic structure of dialogue to help and support students during the learning process in improving their algebraic reasoning skills. Algebraic reasoning is a process in which students generalize mathematical ideas from a certain set of examples, establish these generalizations through argumentative discourse, and express them in a formal and age-appropriate way. The study was designed using the grounded theory qualitative model method, which used three sequential steps: open coding, selective coding, and theoretical coding. The research was conducted on students of the mathematics education department at Universitas Islam Sultan Agung. Data collection methods include algebraic reasoning ability tests, questionnaires, and interviews. Data analysis in grounded theory is an iterative and non-linear process that requires researchers to constantly move back and forth between data collection and analysis. This process aims to produce a theory that is valid and can explain phenomena well based on empirical data obtained during research. The dialogue scaffolding strategy framework in improving students' algebraic reasoning abilities includes instructing, locating, identifying, modeling, advocating, exploring, reformulating, challenging, and evaluating.
0
Improving Grade Ten Students' Achievement in Solid Geometry through Guided Inquiry-Based Instruction Using Variation Theory
guided inquiry-based instruction mathematics achievement secondary education solid geometry variation theory...
This study investigates the effectiveness of Guided Inquiry-Based Instruction (GIBI) integrated with Variation Theory in improving grade ten students’ solid geometry achievement in Debre Tabor City, Ethiopia. A quasi-experimental design involving 99 students found in three classes from three government schools assigned them randomly to three groups: Experimental Group 1 (EG1, n=30) received GIBI with Variation Theory, Experimental Group 2 (EG2, n=37) received only GIBI and the Control Group (CG, n=32) followed traditional methods. Pre- and post-tests analyzed using ANCOVA and paired t-tests revealed significant improvements, with EG1 achieving the highest scores (p = .000). Effect sizes were substantial for EG1 (Cohen's d = 1.50) and EG2 (d = 1.39) compared to CG (d = .73). The results highlight that GIBI combined with Variation Theory significantly enhances students’ solid geometry achievement, emphasizing the value of such kind of innovative teaching strategy to foster students’ achievement in similar educational contexts.
0
Factors Affecting Secondary School Students’ Interest to Learn Mathematics: A Review of Literature
in-class factor policy implications secondary school students’ interest teaching model approach to learn mathematics...
This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.
0
The Application of AI in Chemistry Learning: Experiences of Secondary School Students in Zimbabwe
artificial intelligence chemistry education curriculum integration educational technology student engagement...
This study investigated the integration of artificial intelligence (AI) tools into secondary school chemistry education in Zimbabwe, assessing their impact on student engagement and academic performance. Grounded in Vygotsky’s Sociocultural Theory and Cognitive Load Theory, the research employed a mixed-methods approach within a pragmatic framework. Quantitative data were collected through pre-test and post-test assessments and structured surveys, comparing an experimental group using AI tools with a control group employing traditional methods. Qualitative data from student and teacher interviews and classroom observations were analysed thematically. ANCOVA analysis revealed a statistically significant difference in post-test scores between the experimental and control groups, F (1, 117) = 188.86, p < .005, η² = 0.617, demonstrating a large effect size of AI integration on academic performance. Students in the experimental group exhibited a mean improvement of 20%, controlling for pre-test differences. Additionally, interaction effects between AI use and gender (F (1,115) = 0.17, p = .684) as well as prior chemistry knowledge (F (1,115) = 0.05, p = .829) were not statistically significant. Furthermore, 85% of the experimental group reported higher engagement levels, confirming AI’s role in fostering motivation and conceptual understanding. AI tools facilitated personalized learning paths, interactive simulations, and real-time feedback, optimizing cognitive efficiency and deep learning. Despite these advantages, significant challenges emerged, including limited internet access, insufficient technological resources, lack of teacher training, and curriculum integration difficulties. These barriers highlight the need for strategic investments in digital infrastructure, professional development for educators, and curriculum revisions to fully integrate AI into chemistry education. The findings underscore AI’s transformative potential in STEM education within developing nations. Addressing infrastructural and pedagogical challenges is critical to maximizing AI's impact, ensuring equitable access, and fostering long-term sustainability in educational innovation.
0
Teacher Assessment Data Analytical Freedom in the Science Classroom for Students Success: Promoting Deeper Learning in Canadian Schools
authenticating deeper-learning data-analysis change-motivation science classroom...
The article investigates the impact of assessment data analysis on promoting deeper learning in Canadian high schools, specifically focusing on teachers’ flexibility in data-driven evaluation. The research contributes to the discourse on assessment practices by emphasizing the importance of authentic assessments, competency-based learning, and grading methodologies. Selected high school teachers drawn into this further study formed a fraction of the initial set of participants. Classroom practices of assessments concentrate on: (a) Freedom to facilitate deeper learning in instructing, assessing, and sustaining interest. The others are: (b) Teacher’s emphasis on competency-based (standard-based) learning to make learning appealing to students in educational spaces, and (c) Testing, collecting test score data, analyzing, and reporting students grades to present parents and school districts/boards with accurate progressive data reflective of diversity in learning. In this qualitative focus group case-study discussion, participants indicated time expended in performing critical analysis of data to grade students is burdensome, but the joy of such practice far outweighs the inherent difficulties, knowing that student success is founded on flexibility, freedom in decision-making, and being reflective as educators.
0
Effects of Mathematics Teaching Styles on Students’ Performance: Moderations of Gender, School Type, Location, and Ability Group
achievement considerateness openness rigid teaching styles...
Global concern surrounds students' mathematics learning, development, and achievement. Scholarly discussions have explored various factors influencing students' mathematics performance. However, more information is needed to understand the impact of mathematics teaching styles on student outcomes in developing contexts like Nepal. This study examines the moderators of mathematics teaching styles and their influence on students' performance. To achieve this, the Teachers' Teaching Style Questionnaire (TTSQ) collected quantitative data from 469 grade nine students across 14 high schools in Kathmandu, Lalitpur, and Bhaktapur districts of Nepal. Confirmatory factor analysis, path analysis, and moderation analysis were performed to examine the effects of teaching styles on student achievement in mathematics. Key findings indicate that teaching styles, such as consideration and openness, are not significant predictors of student achievement, but rigid teaching styles can predict student achievement in mathematics. However, impact of the rigid teaching style was negative on student achievement. School type influenced the relationship between performance and considerate teaching, favoring private schools. School location influenced the relationship between considerate teaching and student performance in mathematics, favoring rural schools. Likewise, urban schools had a negative effect on the relationship between teacher openness and student performance, but rural schools had a positive effect on their relationship. Furthermore, low and high-ability students moderated the relationship between considerate teaching and student achievement, with the negative effect of low ability on considerate teaching and student performance and the positive influence of high ability on considerate teaching and student achievement. Student ability influenced the relationship between teacher openness and student performance, with a negative moderations of low and moderate ability students. The study concludes by emphasizing the importance of teacher training in teaching styles for high schools in Nepal and similar contexts.
0
Use of Item Response Curves to Evaluate the Validity of the Force Concept Inventory in Secondary Schools in Uganda and Comparison with Other Educational Contexts
concept inventories conceptual understanding cross-cultural comparison force concept inventory item response curves...
This study examines the validity of the Force Concept Inventory (FCI) in Ugandan secondary schools using Item Response Curves (IRCs) and provides a comparative evaluation of its effectiveness across different educational contexts. The survey focused on Senior Four students preparing for the Uganda Certificate of Education (UCE) examinations, with a representative sample of 941 students (aged 15–17) selected through a multi-stage sampling technique. The initial analysis employed Classical Test Theory (CTT) metrics before the detailed analysis of IRCs for the FCI items. The CTT evaluates item-level and whole test statistics like item difficulty level, discrimination index, and reliability. The CTT indices revealed that the FCI was highly challenging, with an average score of 5.76 out of 30 and a low-reliability coefficient (α = 0.15). Additionally, 73.3% of the items showed poor discrimination, and some distractors were ineffective. The detailed analysis of IRCs showed that several FCI items are inefficient in the context of the Ugandan education system. The IRCs also demonstrated a widespread choice of distractors for many items, with overall scores falling below the threshold indicative of a generally agreed-upon understanding of Newtonian physics. Comparative analysis from other global contexts studies suggests that language barriers, curriculum differences, and instructional methods influence student performance. These findings underscore the necessity of adapting the FCI tool to better fit local educational contexts and implementing additional instructional strategies to enhance conceptual understanding. A more culturally and contextually adapted diagnostic tool may improve physics education and better assess students’ conceptual comprehension of force and motion within the region.
0
Storytelling: A Teaching Technique to Infuse Indigenous Knowledge in Physical Science Pre-service Teacher Training
indigenous knowledge participatory action and learning research physical science project-based - and contextualised learning storytelling...
The infusion of indigenous knowledge in academic subjects is often problematic due to personal perceptions or little experience with indigenous knowledge in a teaching and learning environment. The aim of the research was to indicate the experiences of pre-service teachers when infusing indigenous knowledge via storytelling in Physical Science. This article reports on the personal experience(s) of pre-service teachers in training at a higher education institution where indigenous knowledge was infused into the teaching and learning of Physical Sciences. The implementation of Ethnophysics as a teaching strategy, storytelling as a teaching technique, contextualised - and project-based learning as teaching methods and approaches and reflection on experiences when implementing participatory action learning and action research indicated a transformative way to embrace indigenous knowledge in the teaching and learning of Physical Science. Stories, related to the concept of heat in physical science were collected by the pre-service teachers from trusted adult members in their local communities. The pre-service teachers analysed the stories and reported their interpretation of scientific and indigenous knowledge in the stories. Inductive, thematic analysis was used to interpret pre-service teacher reflection on the experience and the Cultural Historical Activity Theory was used to indicate an overview and the connection between different elements of the research. The participating pre-service teachers indicated that storytelling, as a teaching technique, adds value to how they interpret concepts in Physical Science related to their unique culture. The pre-service teachers gained research skills regarding qualitative research and showed the ability to identify the contribution of both scientific and indigenous knowledge.
0
Analysis of Students’ Academic Performance in Mathematics Across Specific Topic Areas in Selected Lower Secondary Schools in Rwanda
lower secondary schools mathematics performance quantitative research topic-based analysis...
In this study, a topic-based analysis of students’ academic performance in mathematics across specific topic areas in selected lower secondary schools in Rwanda was conducted. The research examined third-term exam scripts (2022-2023 and 2023-2024) of 267 Senior One (S1) and Senior Two (S2) students at Groupe Scolaire Rushara, Groupe Scolaire Sheli, and Groupe Scolaire Nyarugugu, along with data from their eight mathematics teachers. A quantitative approach was employed using ANOVA to compare students’ performance across five key mathematics topics: algebra, metric measurement, proportional reasoning, geometry, and statistics and probability. The findings revealed significant improvement in statistics and probability (p =.000, η² = 0.293) and geometry (p =.000, η² = 0.178) between S1 and S2 students. In contrast, metric measurement showed no significant difference (p =.234, η² = 0.003), while algebra demonstrated minimal improvement (p =.050, η² = 0.007). Proportional reasoning showed moderate progress (p =.000, η² = 0.057), although students continued to struggle with applying proportional relationships. These results indicate that while notable gains were made in some areas, others require targeted pedagogical interventions to improve students’ conceptual understanding and performance in mathematics. The study underscores the importance of adaptive teaching strategies, enhanced instructional materials, and a more student-centered approach to mathematics education in lower secondary schools in Rwanda.
0
Assessment Practices of Ghanaian Senior High School Mathematics Teachers: A National Survey of Practices, Self-Rated Skills, and Predictors
assessment ghana mathematics education secondary school...
This study investigates the assessment practices of senior high school mathematics teachers in Ghana, examining both the dominant classroom methods and teachers’ self-rated assessment skills, as well as the extent to which teacher background characteristics are associated with these practices. Drawing on a national survey of 516 teachers, the results show a strong reliance on traditional paper-and-pencil tests, with high self-reported confidence in administering such assessments. Formative and data-driven practices, including the use of standardized test data and diagnostic assessment, remain infrequently implemented and are associated with lower self-assessed competence. Multiple regression analysis revealed that participation in assessment-focused professional development was the only significant predictor of both broader assessment practice and higher perceived assessment skill, while years of teaching experience, gender, WAEC examining roles, and academic qualifications were not significantly associated. These findings underscore the importance of targeted professional development in strengthening assessment literacy and highlight persistent gaps between policy intentions and classroom realities. The study recommends sustained, context-relevant training to promote more effective and varied assessment practices in mathematics education.
0
Differentiated Assessment Strategies: Best Practices in a Multi-Level Learning Manitoban Classroom
differentiated assessment strategies diverse learners inclusive classroom differentiating curriculum change motivation...
Introduction: This study explores the effectiveness of differentiated assessment as a strategy to support diverse learners in multi-level K–12 classrooms in Manitoba, Canada. Literature Review: Articles published from 2005 onward were sourced from ProQuest, ERIC, Google Scholar, ResearchGate, and Taylor & Francis databases. Methodology: A qualitative document review was employed by analyzing peer-reviewed articles. The review investigates how differentiated assessment practices, such as varied formats, flexible timing, assistive technologies, and constructive feedback, enable educators to identify students’ strengths, interests, and learning needs. Insights inform the adaptation of instructional plans to accommodate diverse learning styles and promote academic equity. Findings and conclusions reveal that while differentiated assessment fosters inclusivity and meaningful evaluation, implementation is hindered by challenges, including limited resources, insufficient teacher training, time constraints, and resistance to change. The findings contribute to ongoing discourse on equitable assessment practices and offer practical implications for enhancing student success in diverse educational settings. Recommendations: The study recommends targeted professional development, increased teacher autonomy, and collaborative efforts among educators and administrators to address these barriers.
0