logo logo European Journal of Mathematics and Science Education

EJMSE is a leading, peer-reviewed research journal based in the UK that provides an online forum for studies in mathematics and science education.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

'teacher education' Search Results

...

3D printer technology and 3D design are used in many fields and are gaining various uses day by day. It is seen that the quality of education and training has increased with the effective use of 3D technology in the education and training environment. This study aims to investigate the attitudes of Pre-Service Teachers about the use of 3D printer activities made with Tinkercad in science education. 43 science pre-service teachers participated in the study, which lasted 8 weeks. A mixed research method was used in this study. The problem-solving scale and the attitude scale towards the use of 3D printers in science education were applied to the pre-service teachers. To collect the research data, the attitude scale was applied as a pre-test and post-test. For Paired samples, a t-test was applied and analyses were performed. In qualitative studies, semi-structured student interview questions were applied. According to the findings of the study, there was a significant increase in students' positive attitudes towards the use of 3D printers in science education. Tinkercad and 3D printer trainings have been given and applications have been made within the scope of these trainings. There have been 6 activities related to 3D printers. Thanks to 3D printers, students have the opportunity to present creative ideas and things they imagine to life by making designs in their minds. It seems that abstract concepts related to the sciences are embodied with a 3D printer and turned into tangible objects. Examining a physical object makes it easier for students to identify mistakes they have made in designs. It is seen that they do creative and solution-oriented work against the problems they encounter. Thus, it is predicted that learning will be more permanent and effective.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.4.217
Pages: 217-228
cloud_download 455
visibility 1704
3
Article Metrics
Views
455
Download
1704
Citations
Crossref
3

...

Reflection requires someone to think in deep and express the impression of a phenomenon or an event. Reflection can be defined as a mirror to look at and see the personal insights, feelings, motivation, or purposes of individuals within a particular context and practice in a realistic way. This study examined the nature of pre-service science teachers’ reflections during the last semester of the teacher education program. There were four cases as student-teachers attending science teacher education program in northwest region of Turkey. The qualitative data, written reflections and researcher field notes were utilized and analyzed through inductive methods. The results indicated that even though pre-service science teachers learned scientific practices and inquiry, they were not able to implement due to some constraints: mentor teachers forced them to teach on a traditional basis. They could only complete the required four-hour teaching practice. Student teachers reflected on their learning as becoming a science teacher, but their actions were restricted, and they could not find supportive community in school and classroom context.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.4.229
Pages: 229-239
cloud_download 230
visibility 891
0
Article Metrics
Views
230
Download
891
Citations
Crossref
0

...

This study examined the impact of the Rwanda African Institute for Mathematical Science, Teacher Training Program (AIMS-TTP) on 228 secondary school students’ interest to learn Mathematics and science taught by 7058-trained teachers over 5-years across 14 districts. Students were exposed to various AIMS-TTP interventions, including industrial visits, science hours, and international day for women and girls in science, mathematics competition, robotics and mathematics challenge, and the Pan African Mathematics Olympiad (PAMO). A survey research design was employed to collect data about students’ interest to learn Mathematics and science, and data on students’ choices of combinations were obtained from the National Examination and School Inspection Authority (NESA) for the academic years 2017 to 2022. Data analysis using bivariate correlation and regression analyses revealed a positive and significant relationship (p<.05) between AIMS-TTP interventions and students’ interest to learn Mathematics and science. Besides, linear regression model indicated that hands-on activities, exposure to mathematics and science role models, science hour and smart classroom were the best predictors of students’ interest to learn mathematics and science (β=.197, p< .05; β=.217, p<.05; β=.234, p< .05; and β=.218, p<.05 respectively). They contributed 66.7 % (Adjusted, R2 = .667, p < .05) of the variance in students’ interest in learning mathematics and science. The AIMS-TTP interventions significantly improved students’ interest to learning mathematics and science. Recommendations include comprehensive training programs with direct student engagement, diverse competitions, and ongoing teacher support through professional development. Future research should focus on students’ STEM interest in Technical, Vocational Education, and Training schools.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.4.241
Pages: 241-252
cloud_download 278
visibility 1128
2
Article Metrics
Views
278
Download
1128
Citations
Crossref
2

...

Bring your own device (BYOD) policy implementation in schools worldwide has allowed students to learn subjects, including mathematics, using personal mobile devices (PMDs). PMD use has enhanced students’ mathematics enjoyment by bridging the gap between theoretical mathematics concepts and their practical applications, which makes mathematics more meaningful and leads to improved results. Nonetheless, students in Namibian basic education are not authorised to learn with PMDs in school. While students’ PMD use in school remains a topic of debate, there remains a need to investigate its impact on students’ mathematics learning and teachers’ perceptions of BYOD in mathematics classrooms. This study evaluated the perceptions and intentions of 209 Namibian mathematics teachers from the Omusati and Khomas regions regarding students’ mathematics learning using PMDs in schools. Data were collected through an online survey. A structural equation model revealed teachers’ positive intentions towards students’ use of PMDs through BYOD in learning mathematics in school. Perceived usefulness (PU), perceived ease of use (PEoU), and price value (PV) factors directly affected the teachers’ behavioural intentions (BI) towards students learning mathematics through BYOD. PEoU significantly affected teachers’ PU, and PV significantly affected teachers’ PEoU and PU. PU significantly mediated the relationship between PEoU and teachers’ intentions. PV significantly indirectly affected teachers’ intentions through PU. PEoU non-significantly mediated the PV and intention relationship. Practical implications are discussed, and recommendations are offered for the Namibian Ministry of Education, Arts and Culture and teacher training institutions.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.4.253
Pages: 253-268
cloud_download 271
visibility 949
2
Article Metrics
Views
271
Download
949
Citations
Crossref
2

...

Teachers and teaching styles are two important factors influencing students’ academic performance. In this action research study, we investigated the differential effectiveness of two teaching methods, conventional learning (CL) and peer-cooperative learning (PCL), on students’ academic performance in fractions. A sample of 120 tenth grade mathematics students from Ibadan North Local Government Area of Oyo State in Nigeria was used for the study. The students were selected from three different secondary schools and grouped into two groups: the experimental (PCL) group and the control (CL) group, each having 60 students. A sample of 5 multiple-choice objective and 5 theory test questions titled Fraction Performance Test (FPT) was used to measure their academic performance after the treatment, and the assessment test scores were recorded. Descriptive statistics of the mean were used to answer the research question, while the two-way ANOVA technique was adopted for testing the research hypothesis at an alpha of 0.05. Summarily, the F (3, 116) statistic (= 8.55, p < .001) indicates significant differences in the effectiveness of the teaching methods. The mean scores also reveal that peer-cooperative learning was more effective than the conventional teaching approach. While the former proved to be a more efficacious treatment for female students, the latter was more suitable for male students. We recommend that different approaches be attempted by teachers, and the most effective in overcoming students’ resistance to learning and improving their academic performance be adopted.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.4.269
Pages: 269-283
cloud_download 279
visibility 1281
2
Article Metrics
Views
279
Download
1281
Citations
Crossref
2

...

Online learning platforms and resources created by the Indonesian Ministry of Education, Culture, Research, and Technology were a blessing in disguise out of the unprecedented school closure caused by the Covid-19 pandemic. These learning resources are yet to be examined to ensure their usability and their role in improving the quality of learning in science classes. This study analyzed the learning modules and a sample lesson plan from the Teachers Learn Teachers Share platforms based on the three-dimensional learning framework. It examined to what extent is the 3-dimensional learning framework incorporated into the grade 4 learning modules and lesson plan on Energy. The methodology for analyzing the sufficiency of disciplinary crosscutting concepts, scientific practices, and core ideas applied here will enrich the Science, Technology, Engineering, and Mathematics (STEM) based education corpus of knowledge. Findings show that the disciplinary core ideas dimension is the most sufficiently covered of all three dimensions while the practices dimension is only partially covered as some of the points are mostly inferred, and the crosscutting concepts dimension still shows much room for improvement. Primary school teachers and schools’ curriculum development units should enrich the learning modules by expanding the discussions on the module coverage with crosscutting concepts.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.1
Pages: 1-11
cloud_download 234
visibility 1008
0
Article Metrics
Views
234
Download
1008
Citations
Crossref
0

...

The overall aim of this study is to examine the association between Swedish students’ attitudes towards mathematics, mathematics achievement as measured by the Trends in Mathematics and Science Study (TIMSS), socioeconomic status (SES), and educational background variables. A further aim is to investigate whether students’ attitudes towards mathematics have a mediating role between their mathematics achievement and their background. Several indicators of students’ SES and background, taken from both the TIMSS 2015 database and from Swedish official registers, were used. The overall results show that there were differences in attitudes towards mathematics in relation to the different SES and educational background measures. There are also associations between students’ SES and both TIMSS mathematics achievement and their attitudes towards mathematics. The students’ attitudes towards mathematics only had a small mediation role between the students’ backgrounds and TIMSS mathematics achievement. Finally, although the mediation models had a better fit when including other information, the mediation effect was lower. Practical implications of the obtained results are discussed.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.13
Pages: 13-26
cloud_download 298
visibility 1590
2
Article Metrics
Views
298
Download
1590
Citations
Crossref
2

...

The study investigated the impact of YouTube video assisted instructions (YVAI) on pre-service teachers’(PSTs) attitudes and academic performance in chemistry classroom. A quasi-experimental design was adopted for the study. One hundred and twenty (120) Pre-Service Teachers (PSTs) pursuing primary education programme constituted the participants of the study. Sixty (60) PSTs each were non-randomly assigned to the Experimental Group (EG) and Control Group (CG). Data on PSTs’ attitude and performance were collected with PSTAS and GCPT respectively. The SPSS software version 20 was used to analyse the data to generate descriptive and inferential statistics. A non-parametric analysis was used in the inferential statistics. The attitude means rank (MR=78.62) of EG (U = 713.000, Z=-6.924, p <.001) was statistically higher than CG (MR=42.38) (U = 713.000, Z=-6.924, p <.001) after treatment. The EG after treatment recorded a mean rank (80.86) statistically higher than CG (40.14), U = 578.500, Z = -6.441, p <.001 after treatment. YVAI was proven as an effective instructional strategy that enhances learners’ altitudinal changes and performance. The study recommended the use of YouTube technological-driven instructions to support classroom instructions.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.39
Pages: 39-50
cloud_download 276
visibility 1555
0
Article Metrics
Views
276
Download
1555
Citations
Crossref
0

...

Learning to teach mathematics has become crucial since its application in real life cannot go unmentioned. The desire of mathematics education researchers to make mathematics concepts easier for pre-service teachers to easily understand has attracted attention. This has become indispensable since after college, pre-service teachers are deployed from K-12 to assist learners in understanding mathematics concepts. The study aimed to ascertain how improvement in the learning of mathematics concepts using the Problem-based learning (PBL) approach could be understood and/or explained among pre-service teachers. This was viewed in two folds: how improvement in learning outcomes using the PBL approach could be explained; and how pre-service teachers’ disposition about the PBL could be explained/understood. Exploratory case study design involving qualitative and quantitative data was concurrently gathered and used. This involved the use of data collection instruments such as focus group discussion, pre-post-test scores, PBL observation protocol, and PBL disposition questionnaire. The study showed that the PBL method improved the learning of mathematics concepts among pre-service teachers. Pre-service teachers also showed a positive disposition (interest, belief, and attitude) toward the PBL intervention. The authors advocated for the conduct of a longitudinal study to understand the direction of change over time.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.51
Pages: 51-65
cloud_download 283
visibility 1333
0
Article Metrics
Views
283
Download
1333
Citations
Crossref
0

...

This paper aims to examine the trends around research in science teaching following the outbreak of the COVID-19 pandemic. This event had a significant impact on education institutions, as it led to the shift to online learning that challenged educators in terms of planning, implementing, and dealing with issues such as the deteriorating mental and physical health of students. This is reflected in the trends of researchers. Contemporary trends around science teaching seem to focus on new teaching practices, modes, areas of investigation, and the impact of modern technology. However, there is limited bibliometric research examining the impact of COVID-19 on science teaching. Hence, 12,840 documents published from 2020 onwards were collected and analyzed from the Scopus platform. The analysis depicted a general interest of researchers around this topic. Findings regarding the focus and area of study, country, and the yearly rate of publication are aligned with those that focus on the individual impact of the COVID-19 pandemic on teaching and science education. This can give insights to the general trends regarding the future of science teaching.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.67
Pages: 67-79
cloud_download 220
visibility 1010
0
Article Metrics
Views
220
Download
1010
Citations
Crossref
0

...

This paper derives from a large research project focusing on mathematics and science assessment of student learning in three high-need, rural, and urban secondary schools in Manitoba, Canada. The study employed qualitative methods of semi-structured interviews and classroom video recordings of teaching practice experiences of 12 mathematics and science teachers, with the purpose that explore how authentic assessment forms assist effective teaching to monitor and motivate student learning achievement and growth. The results indicate that about 67% (eight out of the twelve of the participants) of the research participants practice the traditional mode of standard assessment that consists of multiple forms of questioning. The participants' rationale relates to speedy evaluations of student work, preparing feedback reports to parents and students, and objectivity of the assessment process. The other 33% (four out of twelve of the participants) of participants practice authentic assessment that concentrates on: (1) Allowing students to apply what they have learned rather than testing their ability to memorize and regurgitate concepts, (2) Allowing students to personalize their knowledge and values, (3) Encouraging group project-based learning and with the use of rubric for evaluating and monitoring, (4) Promoting deep learning to become life-long learners, (5) Recognizing, acknowledging, and validating diversity in student learning styles, interests, and aspirations, and further, authentic assessment is an excellent opportunity to apply communicative technologies such as podcasts and webinars in learning and undertaking investigations in mathematics and science learning. Furthermore, some participants asserted that authentic assessments are time-consuming, labor-intensive, and resource-demanding, aside from the limited resources and lack of training, which are some of the challenges of implementing authentic assessment. Other participants stated that all teachers must be familiar with using all assessment tools. The paper concludes that the principal plays a critical instructional leadership role in a school-wide implementation of authentic assessment.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.93
Pages: 93-104
cloud_download 249
visibility 1418
3
Article Metrics
Views
249
Download
1418
Citations
Crossref
3

Use of Magic Tricks as Analogies in the Science Classroom

analogies magic tricks science instruction

Danny Rudnick , Sarah B. Boesdorfer


...

Science, magic, and education have always been linked, from science-based magic shows to teachers presenting demonstrations as magic tricks to capture their students’ interest and provide a mnemonic reference for the topics under discussion. Magic as an art form is also often used to convey information or act as an analogy for invisible phenomena. This study examined how the use of a magic effect designed as an analogy for active and passive transport in cells affected student scores and perception of the activity when compared to a standard story analogy in a high school integrated science course. To determine this, students participated in either a magic-based analogy activity (MBAA) or a concrete story-based analogy activity (SBAA), and then data was collected and analysed using a pre-test/post-test for the content and a Likert-scale anonymous survey for the student perception of the activity. The MBAA was shown to be similar to the SBAA in helping students learn but had the added benefit of increasing students’ reported engagement with the activity. This study shows how bringing magic into the science classroom can have a positive impact on student engagement and provides teachers with another option to support student learning.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.105
Pages: 105-120
cloud_download 235
visibility 1533
0
Article Metrics
Views
235
Download
1533
Citations
Crossref
0

Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues

big science covid-19 learning enjoyment learning interest socio-scientific issues

Brady Michael Jack , Chi-Chen Chen , Hsin-Hui Wang , Thomas J. Smith


...

Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.121
Pages: 121-133
cloud_download 195
visibility 997
0
Article Metrics
Views
195
Download
997
Citations
Crossref
0

...

Recent studies in mathematics education have focused on students' geometric problem-solving abilities, self-regulation, and the problem-based learning (PBL) model. The goal of this study is to examine how well junior high school students' self-regulation and geometric problem-solving skills are enhanced by the PBL model. In this study, quantitative methods using a quasi-experimental design were used. The sample consisted of 45 students from Amanatul Ummah junior high school in Mojokerto, Indonesia. Five types of instruments were utilized to collect data for this research, namely Syllabus, lesson plans, student worksheets, Self-Regulation Questionnaire (SRQ), and Geometry Problem-solving Test (GPST). The outcomes of the N-Gain test demonstrated how well the PBL model works to help students develop their capacity for self-regulation and geometric problem-solving. Apart from that, there are some notable differences between the traditional technique and the experimental class that is taught using the PBL paradigm. It is advised that similar trials be conducted in the future with a larger population and sample size. In both public and private junior high schools, it is strongly advised that more research be done with a larger population and sample size. Future researchers can also expand the study materials of geometry, not only to flat-sided geometric shapes but even further to curved-sided geometric shapes and also other subject matters.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.135
Pages: 135-145
cloud_download 261
visibility 2007
0
Article Metrics
Views
261
Download
2007
Citations
Crossref
0

...

This study compares experts' and teachers' conceptualization of pedagogical content knowledge (PCK). The study participants included teachers (n=20) enrolled in a graduate mathematics education course on PCK. Participants responded to two open-ended questions: a) describe in your own words what PCK is; b) provide an example of PCK. The responses were collected, qualitatively and quantitatively analyzed, and then compared to those suggested by experts to identify and describe the similarities and differences between teachers’ and experts’ conceptualizations using the Pareto analysis. Experts’ and teachers’ PCK components ranking was analyzed using the nonparametric Mann-Whitney U test. Even though the results of the quantitative analysis were not significant (e.g., the observed U-value is 32 whereas the critical value of U at p < .05 is 13), the qualitative discussion on the differences between expert and teachers’ ranking suggests insightful interpretation of priorities among PCK components across the two groups.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.147
Pages: 147-166
cloud_download 157
visibility 823
0
Article Metrics
Views
157
Download
823
Citations
Crossref
0

Dialogic Scaffolding: How to Design Critical Questions in Developing Students Algebraic Reasoning?

algebraic reasoning critical questions scaffolding dialogue

Mochamad Abdul Basir , Imam Kusmaryono , Hevy Risqi Maharani


...

Scaffolding dialogue is a concept in learning that refers to the support or assistance given to individuals during the dialogue process. The main objective of this research is to create a basic structure of dialogue to help and support students during the learning process in improving their algebraic reasoning skills. Algebraic reasoning is a process in which students generalize mathematical ideas from a certain set of examples, establish these generalizations through argumentative discourse, and express them in a formal and age-appropriate way. The study was designed using the grounded theory qualitative model method, which used three sequential steps: open coding, selective coding, and theoretical coding. The research was conducted on students of the mathematics education department at Universitas Islam Sultan Agung. Data collection methods include algebraic reasoning ability tests, questionnaires, and interviews. Data analysis in grounded theory is an iterative and non-linear process that requires researchers to constantly move back and forth between data collection and analysis. This process aims to produce a theory that is valid and can explain phenomena well based on empirical data obtained during research. The dialogue scaffolding strategy framework in improving students' algebraic reasoning abilities includes instructing, locating, identifying, modeling, advocating, exploring, reformulating, challenging, and evaluating.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.167
Pages: 167-184
cloud_download 194
visibility 1362
0
Article Metrics
Views
194
Download
1362
Citations
Crossref
0

...

We aimed to explore how Early Childhood (EC) preservice teachers (PSTs) choose and apply content-specific mathematics and science standards by analyzing two sets of lesson plans and two transcripts from whole class discussions from an EC mathematics and science methods course. From our analyses, we identified major themes and explanatory categories that indicated issues related to PSTs’ standards selection process. Students’ reasoning about their choices illustrated the resiliency of their beliefs about teaching and learning EC mathematics and science, and how their own observation experiences prevailed over our explicit instruction and assignment expectations. Drawing from literature related to Lortie’s (1975) Apprenticeship of Observation, we use our findings to consider ways to better appreciate and mitigate the strength of PSTs’ incoming beliefs on their readiness to plan for and implement lessons. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.201
Pages: 201-211
cloud_download 97
visibility 783
0
Article Metrics
Views
97
Download
783
Citations
Crossref
0

...

Understanding and handling diversity, as well as inclusion, are critical in ensuring effective teaching and learning, especially in the mathematics classroom, where students have varied abilities. Despite the growing research in inclusive education, little is known about how mathematics teachers in the Ghanaian context understand the theory of multiple intelligences (MIs), leaving a gap in how this theory can be applied in the classroom to improve practice and inclusion. In this study, the authors explored Ghanaian mathematics teachers’ conceptions of the theory of MIs using a basic qualitative method design. 12 senior high school mathematics teachers in one municipality of Ghana were engaged through questionnaires and semi-structured interviews, including field notes, to provide information on their conceptions of the theory of MIs. Thematic analysis revealed that mathematics teachers conceived the theory of MIs as a theory of different styles for learning, multiple teaching strategies, and a theory for catering to diverse student needs. The findings highlight the need for professional development and teacher training curriculum development to enhance teachers' understanding of the theory of MIs to improve their practice and handling of inclusiveness and diversity in the classroom.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.213
Pages: 213-225
cloud_download 139
visibility 933
0
Article Metrics
Views
139
Download
933
Citations
Crossref
0

...

This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.  

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.227
Pages: 227-240
cloud_download 234
visibility 1899
0
Article Metrics
Views
234
Download
1899
Citations
Crossref
0

...

This study investigated the integration of artificial intelligence (AI) tools into secondary school chemistry education in Zimbabwe, assessing their impact on student engagement and academic performance. Grounded in Vygotsky’s Sociocultural Theory and Cognitive Load Theory, the research employed a mixed-methods approach within a pragmatic framework. Quantitative data were collected through pre-test and post-test assessments and structured surveys, comparing an experimental group using AI tools with a control group employing traditional methods. Qualitative data from student and teacher interviews and classroom observations were analysed thematically. ANCOVA analysis revealed a statistically significant difference in post-test scores between the experimental and control groups, F (1, 117) = 188.86, p < .005, η² = 0.617, demonstrating a large effect size of AI integration on academic performance. Students in the experimental group exhibited a mean improvement of 20%, controlling for pre-test differences. Additionally, interaction effects between AI use and gender (F (1,115) = 0.17, p = .684) as well as prior chemistry knowledge (F (1,115) = 0.05, p = .829) were not statistically significant. Furthermore, 85% of the experimental group reported higher engagement levels, confirming AI’s role in fostering motivation and conceptual understanding. AI tools facilitated personalized learning paths, interactive simulations, and real-time feedback, optimizing cognitive efficiency and deep learning. Despite these advantages, significant challenges emerged, including limited internet access, insufficient technological resources, lack of teacher training, and curriculum integration difficulties. These barriers highlight the need for strategic investments in digital infrastructure, professional development for educators, and curriculum revisions to fully integrate AI into chemistry education. The findings underscore AI’s transformative potential in STEM education within developing nations. Addressing infrastructural and pedagogical challenges is critical to maximizing AI's impact, ensuring equitable access, and fostering long-term sustainability in educational innovation.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.1
Pages: 1-15
cloud_download 161
visibility 1010
0
Article Metrics
Views
161
Download
1010
Citations
Crossref
0

...