logo logo European Journal of Mathematics and Science Education

EJMSE is a leading, peer-reviewed research journal based in the UK that provides an online forum for studies in mathematics and science education.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

'stem' Search Results

...

The overall aim of this study is to examine the association between Swedish students’ attitudes towards mathematics, mathematics achievement as measured by the Trends in Mathematics and Science Study (TIMSS), socioeconomic status (SES), and educational background variables. A further aim is to investigate whether students’ attitudes towards mathematics have a mediating role between their mathematics achievement and their background. Several indicators of students’ SES and background, taken from both the TIMSS 2015 database and from Swedish official registers, were used. The overall results show that there were differences in attitudes towards mathematics in relation to the different SES and educational background measures. There are also associations between students’ SES and both TIMSS mathematics achievement and their attitudes towards mathematics. The students’ attitudes towards mathematics only had a small mediation role between the students’ backgrounds and TIMSS mathematics achievement. Finally, although the mediation models had a better fit when including other information, the mediation effect was lower. Practical implications of the obtained results are discussed.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.13
Pages: 13-26
cloud_download 298
visibility 1590
2
Article Metrics
Views
298
Download
1590
Citations
Crossref
2

...

Each student has a different amount of time to fully understand information, students with high academic ability (UA) need less time than students with low academic ability (LA). Teachers should apply learning models that can facilitate their study time according to their individual needs. The aim of this research is to assess which learning model is most optimal in reducing the gap in understanding mathematical concepts between UA and LA students. Apart from that, this research also evaluates the effectiveness of implementing the flipped class (FC) model in increasing students' understanding of mathematical concepts, compared to the problem-based learning (PBL) model and conventional learning models. The research method used was the N-Gain Test and ANCOVA. The research results show that the FC model is the most optimal in reducing the gap in understanding mathematical concepts between LA and UA students. In addition, both FC and PBL models have proven effective in increasing students' understanding of mathematical concepts when compared to conventional models. Future research could consider combining the FC model with PBL or other learning models to see whether combining these models can improve students' understanding of mathematical concepts more significantly.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.27
Pages: 27-37
cloud_download 255
visibility 1093
2
Article Metrics
Views
255
Download
1093
Citations
Crossref
2

...

The study investigated the impact of YouTube video assisted instructions (YVAI) on pre-service teachers’(PSTs) attitudes and academic performance in chemistry classroom. A quasi-experimental design was adopted for the study. One hundred and twenty (120) Pre-Service Teachers (PSTs) pursuing primary education programme constituted the participants of the study. Sixty (60) PSTs each were non-randomly assigned to the Experimental Group (EG) and Control Group (CG). Data on PSTs’ attitude and performance were collected with PSTAS and GCPT respectively. The SPSS software version 20 was used to analyse the data to generate descriptive and inferential statistics. A non-parametric analysis was used in the inferential statistics. The attitude means rank (MR=78.62) of EG (U = 713.000, Z=-6.924, p <.001) was statistically higher than CG (MR=42.38) (U = 713.000, Z=-6.924, p <.001) after treatment. The EG after treatment recorded a mean rank (80.86) statistically higher than CG (40.14), U = 578.500, Z = -6.441, p <.001 after treatment. YVAI was proven as an effective instructional strategy that enhances learners’ altitudinal changes and performance. The study recommended the use of YouTube technological-driven instructions to support classroom instructions.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.1.39
Pages: 39-50
cloud_download 276
visibility 1555
0
Article Metrics
Views
276
Download
1555
Citations
Crossref
0

...

In the domain of engineering education, the crucial role of mathematics, especially Calculus, cannot be overstated, as it lays the foundational groundwork for numerous sciences, technology, engineering and mathematics (STEM) courses. The integration of mathematics into STEM disciplines is achieved through the practical application of mathematical concepts in real-world scenarios or in conjunction with other STEM subjects, thereby enhancing the coherence of engineering studies and acting as a significant motivational catalyst for students. This paper presents an analytical narrative of a practical mathematics assignment, woven into the Calculus curriculum and other STEM courses from 2013 to 2018. It delves into the potential impacts of these practical assignments on student performance and attitudes by evaluating data sourced from final exam scores and anonymous course surveys, both before and after the intervention period. Through the analysis of an extensive dataset comprising 1526 final exam scores, this study endeavors to make a substantive contribution to Future Technology Studies (FTS), focusing on the strategic harmonization of mathematics and STEM courses to enrich the educational experience and foster a more cohesive and applied learning framework in these disciplines.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.81
Pages: 81-91
cloud_download 170
visibility 1010
0
Article Metrics
Views
170
Download
1010
Citations
Crossref
0

Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues

big science covid-19 learning enjoyment learning interest socio-scientific issues

Brady Michael Jack , Chi-Chen Chen , Hsin-Hui Wang , Thomas J. Smith


...

Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.121
Pages: 121-133
cloud_download 195
visibility 997
0
Article Metrics
Views
195
Download
997
Citations
Crossref
0

...

This study compares experts' and teachers' conceptualization of pedagogical content knowledge (PCK). The study participants included teachers (n=20) enrolled in a graduate mathematics education course on PCK. Participants responded to two open-ended questions: a) describe in your own words what PCK is; b) provide an example of PCK. The responses were collected, qualitatively and quantitatively analyzed, and then compared to those suggested by experts to identify and describe the similarities and differences between teachers’ and experts’ conceptualizations using the Pareto analysis. Experts’ and teachers’ PCK components ranking was analyzed using the nonparametric Mann-Whitney U test. Even though the results of the quantitative analysis were not significant (e.g., the observed U-value is 32 whereas the critical value of U at p < .05 is 13), the qualitative discussion on the differences between expert and teachers’ ranking suggests insightful interpretation of priorities among PCK components across the two groups.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.147
Pages: 147-166
cloud_download 157
visibility 823
0
Article Metrics
Views
157
Download
823
Citations
Crossref
0

Dialogic Scaffolding: How to Design Critical Questions in Developing Students Algebraic Reasoning?

algebraic reasoning critical questions scaffolding dialogue

Mochamad Abdul Basir , Imam Kusmaryono , Hevy Risqi Maharani


...

Scaffolding dialogue is a concept in learning that refers to the support or assistance given to individuals during the dialogue process. The main objective of this research is to create a basic structure of dialogue to help and support students during the learning process in improving their algebraic reasoning skills. Algebraic reasoning is a process in which students generalize mathematical ideas from a certain set of examples, establish these generalizations through argumentative discourse, and express them in a formal and age-appropriate way. The study was designed using the grounded theory qualitative model method, which used three sequential steps: open coding, selective coding, and theoretical coding. The research was conducted on students of the mathematics education department at Universitas Islam Sultan Agung. Data collection methods include algebraic reasoning ability tests, questionnaires, and interviews. Data analysis in grounded theory is an iterative and non-linear process that requires researchers to constantly move back and forth between data collection and analysis. This process aims to produce a theory that is valid and can explain phenomena well based on empirical data obtained during research. The dialogue scaffolding strategy framework in improving students' algebraic reasoning abilities includes instructing, locating, identifying, modeling, advocating, exploring, reformulating, challenging, and evaluating.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.167
Pages: 167-184
cloud_download 194
visibility 1362
0
Article Metrics
Views
194
Download
1362
Citations
Crossref
0

...

This study investigates the effectiveness of Guided Inquiry-Based Instruction (GIBI) integrated with Variation Theory in improving grade ten students’ solid geometry achievement in Debre Tabor City, Ethiopia. A quasi-experimental design involving 99 students found in three classes from three government schools assigned them randomly to three groups: Experimental Group 1 (EG1, n=30) received GIBI with Variation Theory, Experimental Group 2 (EG2, n=37) received only GIBI and the Control Group (CG, n=32) followed traditional methods. Pre- and post-tests analyzed using ANCOVA and paired t-tests revealed significant improvements, with EG1 achieving the highest scores (p = .000). Effect sizes were substantial for EG1 (Cohen's d = 1.50) and EG2 (d = 1.39) compared to CG (d = .73). The results highlight that GIBI combined with Variation Theory significantly enhances students’ solid geometry achievement, emphasizing the value of such kind of innovative teaching strategy to foster students’ achievement in similar educational contexts. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.185
Pages: 185-198
cloud_download 151
visibility 979
0
Article Metrics
Views
151
Download
979
Citations
Crossref
0

...

We aimed to explore how Early Childhood (EC) preservice teachers (PSTs) choose and apply content-specific mathematics and science standards by analyzing two sets of lesson plans and two transcripts from whole class discussions from an EC mathematics and science methods course. From our analyses, we identified major themes and explanatory categories that indicated issues related to PSTs’ standards selection process. Students’ reasoning about their choices illustrated the resiliency of their beliefs about teaching and learning EC mathematics and science, and how their own observation experiences prevailed over our explicit instruction and assignment expectations. Drawing from literature related to Lortie’s (1975) Apprenticeship of Observation, we use our findings to consider ways to better appreciate and mitigate the strength of PSTs’ incoming beliefs on their readiness to plan for and implement lessons. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.201
Pages: 201-211
cloud_download 97
visibility 783
0
Article Metrics
Views
97
Download
783
Citations
Crossref
0

...

This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.  

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.227
Pages: 227-240
cloud_download 234
visibility 1899
0
Article Metrics
Views
234
Download
1899
Citations
Crossref
0

...

This study investigated the integration of artificial intelligence (AI) tools into secondary school chemistry education in Zimbabwe, assessing their impact on student engagement and academic performance. Grounded in Vygotsky’s Sociocultural Theory and Cognitive Load Theory, the research employed a mixed-methods approach within a pragmatic framework. Quantitative data were collected through pre-test and post-test assessments and structured surveys, comparing an experimental group using AI tools with a control group employing traditional methods. Qualitative data from student and teacher interviews and classroom observations were analysed thematically. ANCOVA analysis revealed a statistically significant difference in post-test scores between the experimental and control groups, F (1, 117) = 188.86, p < .005, η² = 0.617, demonstrating a large effect size of AI integration on academic performance. Students in the experimental group exhibited a mean improvement of 20%, controlling for pre-test differences. Additionally, interaction effects between AI use and gender (F (1,115) = 0.17, p = .684) as well as prior chemistry knowledge (F (1,115) = 0.05, p = .829) were not statistically significant. Furthermore, 85% of the experimental group reported higher engagement levels, confirming AI’s role in fostering motivation and conceptual understanding. AI tools facilitated personalized learning paths, interactive simulations, and real-time feedback, optimizing cognitive efficiency and deep learning. Despite these advantages, significant challenges emerged, including limited internet access, insufficient technological resources, lack of teacher training, and curriculum integration difficulties. These barriers highlight the need for strategic investments in digital infrastructure, professional development for educators, and curriculum revisions to fully integrate AI into chemistry education. The findings underscore AI’s transformative potential in STEM education within developing nations. Addressing infrastructural and pedagogical challenges is critical to maximizing AI's impact, ensuring equitable access, and fostering long-term sustainability in educational innovation.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.1
Pages: 1-15
cloud_download 161
visibility 1010
0
Article Metrics
Views
161
Download
1010
Citations
Crossref
0

...

The article investigates the impact of assessment data analysis on promoting deeper learning in Canadian high schools, specifically focusing on teachers’ flexibility in data-driven evaluation. The research contributes to the discourse on assessment practices by emphasizing the importance of authentic assessments, competency-based learning, and grading methodologies. Selected high school teachers drawn into this further study formed a fraction of the initial set of participants. Classroom practices of assessments concentrate on: (a) Freedom to facilitate deeper learning in instructing, assessing, and sustaining interest. The others are: (b) Teacher’s emphasis on competency-based (standard-based) learning to make learning appealing to students in educational spaces, and (c) Testing, collecting test score data, analyzing, and reporting students grades to present parents and school districts/boards with accurate progressive data reflective of diversity in learning. In this qualitative focus group case-study discussion, participants indicated time expended in performing critical analysis of data to grade students is burdensome, but the joy of such practice far outweighs the inherent difficulties, knowing that student success is founded on flexibility, freedom in decision-making, and being reflective as educators.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.17
Pages: 17-31
cloud_download 74
visibility 515
0
Article Metrics
Views
74
Download
515
Citations
Crossref
0

Effects of Mathematics Teaching Styles on Students’ Performance: Moderations of Gender, School Type, Location, and Ability Group

achievement considerateness openness rigid teaching styles

Bishnu Khanal , Shashidhar Belbase , Binod Babu Dhakal , Bed Raj Acharya , Mukunda Prakash Kshetree , Ram Krishna Panthi , Maxwell Peprah Opoku


...

Global concern surrounds students' mathematics learning, development, and achievement. Scholarly discussions have explored various factors influencing students' mathematics performance. However, more information is needed to understand the impact of mathematics teaching styles on student outcomes in developing contexts like Nepal. This study examines the moderators of mathematics teaching styles and their influence on students' performance. To achieve this, the Teachers' Teaching Style Questionnaire (TTSQ) collected quantitative data from 469 grade nine students across 14 high schools in Kathmandu, Lalitpur, and Bhaktapur districts of Nepal. Confirmatory factor analysis, path analysis, and moderation analysis were performed to examine the effects of teaching styles on student achievement in mathematics. Key findings indicate that teaching styles, such as consideration and openness, are not significant predictors of student achievement, but rigid teaching styles can predict student achievement in mathematics. However, impact of the rigid teaching style was negative on student achievement. School type influenced the relationship between performance and considerate teaching, favoring private schools. School location influenced the relationship between considerate teaching and student performance in mathematics, favoring rural schools. Likewise, urban schools had a negative effect on the relationship between teacher openness and student performance, but rural schools had a positive effect on their relationship. Furthermore, low and high-ability students moderated the relationship between considerate teaching and student achievement, with the negative effect of low ability on considerate teaching and student performance and the positive influence of high ability on considerate teaching and student achievement. Student ability influenced the relationship between teacher openness and student performance, with a negative moderations of low and moderate ability students. The study concludes by emphasizing the importance of teacher training in teaching styles for high schools in Nepal and similar contexts.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.33
Pages: 33-49
cloud_download 117
visibility 735
0
Article Metrics
Views
117
Download
735
Citations
Crossref
0

...

This study investigates an integrative instructional model combining Concrete-Pictorial-Abstract (CPA), Task Analysis (TA), and the 3R strategies (relaxation, repetition, and routine) in teaching mathematics to students with learning disabilities (LD). LD is a neurological disorder that affects the capacity to acquire skills in reading, writing, and mathematics, presenting persistent challenges that traditional teaching approaches may not fully address. Through an ethnographic approach involving participatory observation of a teacher and three LD students over a semester, this study examines how the CPA model—progressing from concrete objects to pictorial aids and then to abstract concepts—can be customised to individual needs. Findings highlight that CPA is most effective when adapted to the diverse learning styles of LD students. While one student thrives with tactile tools to reinforce understanding, another becomes distracted, viewing the concrete aids as play items, and a third displays a preference for abstract reasoning without needing pictorial or tangible support. The TA framework, used to deconstruct complex tasks, enables students to engage in incremental learning steps, while the 3R approach helps foster a supportive learning environment by incorporating relaxation, routine, and reinforcement of concepts. By accommodating individual learning preferences, teachers can support diverse cognitive processes and promote meaningful progress in mathematical understanding. The study calls for educators to move beyond conventional one-size-fits-all strategies, advocating for personalised and adaptive approaches that can better meet the unique needs of LD students in mathematics education.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.51
Pages: 51-64
cloud_download 91
visibility 555
0
Article Metrics
Views
91
Download
555
Citations
Crossref
0

...

Comparison of mathematics textbooks between Indonesia and Singapore is one way to assess the educational process. This article provides insight into how mathematical concepts are taught and applied in problem-solving in each country. The study provides knowledge about how mathematical concepts are constructed by teachers and students and implemented in problem-solving between countries. This study aims to compare task designs in high school mathematics textbooks between Indonesia and Singapore based on the type of task, technique, technology, and theory used, with a focus on cubes and cuboids. The comparative analysis of the two books uses praxeological theory, the main construction of Didactic Anthropology Theory, with reference to epistemological model (REM) model analysis. The research results show that there are differences in the approaches, methods, and habits used in task design in the two countries. The techniques, technology and theories found in the two task designs show that Indonesian mathematics textbooks use more verification and drawing up conclusions which are influenced by perceptual techniques. Meanwhile, the task of designing Singapore's mathematics textbooks involves more direct investigations into forming students' knowledge through physical and operational techniques. The techniques, technology, and theories used in both designs influence the number of learning obstacles. Epistemological constraints occur in Indonesian textbooks and only a few in Singapore textbooks. These findings provide insight into how to build mathematical knowledge for students through good assignment design based on a country's educational character.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.65
Pages: 65-78
cloud_download 94
visibility 768
0
Article Metrics
Views
94
Download
768
Citations
Crossref
0

...

This study examines the validity of the Force Concept Inventory (FCI) in Ugandan secondary schools using Item Response Curves (IRCs) and provides a comparative evaluation of its effectiveness across different educational contexts. The survey focused on Senior Four students preparing for the Uganda Certificate of Education (UCE) examinations, with a representative sample of 941 students (aged 15–17) selected through a multi-stage sampling technique. The initial analysis employed Classical Test Theory (CTT) metrics before the detailed analysis of IRCs for the FCI items. The CTT evaluates item-level and whole test statistics like item difficulty level, discrimination index, and reliability. The CTT indices revealed that the FCI was highly challenging, with an average score of 5.76 out of 30 and a low-reliability coefficient (α = 0.15). Additionally, 73.3% of the items showed poor discrimination, and some distractors were ineffective. The detailed analysis of IRCs showed that several FCI items are inefficient in the context of the Ugandan education system. The IRCs also demonstrated a widespread choice of distractors for many items, with overall scores falling below the threshold indicative of a generally agreed-upon understanding of Newtonian physics. Comparative analysis from other global contexts studies suggests that language barriers, curriculum differences, and instructional methods influence student performance. These findings underscore the necessity of adapting the FCI tool to better fit local educational contexts and implementing additional instructional strategies to enhance conceptual understanding. A more culturally and contextually adapted diagnostic tool may improve physics education and better assess students’ conceptual comprehension of force and motion within the region.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.79
Pages: 79-95
cloud_download 122
visibility 789
0
Article Metrics
Views
122
Download
789
Citations
Crossref
0

...

The infusion of indigenous knowledge in academic subjects is often problematic due to personal perceptions or little experience with indigenous knowledge in a teaching and learning environment. The aim of the research was to indicate the experiences of pre-service teachers when infusing indigenous knowledge via storytelling in Physical Science. This article reports on the personal experience(s) of pre-service teachers in training at a higher education institution where indigenous knowledge was infused into the teaching and learning of Physical Sciences. The implementation of Ethnophysics as a teaching strategy, storytelling as a teaching technique, contextualised - and project-based learning as teaching methods and approaches and reflection on experiences when implementing participatory action learning and action research indicated a transformative way to embrace indigenous knowledge in the teaching and learning of Physical Science. Stories, related to the concept of heat in physical science were collected by the pre-service teachers from trusted adult members in their local communities. The pre-service teachers analysed the stories and reported their interpretation of scientific and indigenous knowledge in the stories. Inductive, thematic analysis was used to interpret pre-service teacher reflection on the experience and the Cultural Historical Activity Theory was used to indicate an overview and the connection between different elements of the research. The participating pre-service teachers indicated that storytelling, as a teaching technique, adds value to how they interpret concepts in Physical Science related to their unique culture. The pre-service teachers gained research skills regarding qualitative research and showed the ability to identify the contribution of both scientific and indigenous knowledge.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.113
Pages: 113-126
cloud_download 83
visibility 566
0
Article Metrics
Views
83
Download
566
Citations
Crossref
0

...

This study explores how mentor teachers in specialized teaching areas, particularly chemistry, interact in an Online Professional Development (OPD) program. The Mentor Teacher Professional Development (MeT-PD) program was designed to improve mentoring practices by creating opportunities for collaborative learning through various online activities, such as Individual Response (IR), Interactive Individual Response (IIR), Small Group Discussions (SGD), and Large Group Discussions (LGD). Using a qualitative case study approach, the research analyzed data collected from Zoom recordings and Nearpod activity logs. The findings indicate that while LGDs were useful for interactions between facilitators and learners, they were not as effective in fostering interaction among learners themselves, mainly due to the cognitive demands and how these discussions were structured. On the other hand, SGDs seemed to foster stronger participant interaction, probably because the smaller group settings led to more valuable exchanges. These findings highlight the need of thoughtful planning of OPD activities, with particular focus on group size management and selection of suitable discussion formats to improve both interaction and learning outcomes.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.137
Pages: 137-146
cloud_download 88
visibility 388
0
Article Metrics
Views
88
Download
388
Citations
Crossref
0

...

This study investigates the assessment practices of senior high school mathematics teachers in Ghana, examining both the dominant classroom methods and teachers’ self-rated assessment skills, as well as the extent to which teacher background characteristics are associated with these practices. Drawing on a national survey of 516 teachers, the results show a strong reliance on traditional paper-and-pencil tests, with high self-reported confidence in administering such assessments. Formative and data-driven practices, including the use of standardized test data and diagnostic assessment, remain infrequently implemented and are associated with lower self-assessed competence. Multiple regression analysis revealed that participation in assessment-focused professional development was the only significant predictor of both broader assessment practice and higher perceived assessment skill, while years of teaching experience, gender, WAEC examining roles, and academic qualifications were not significantly associated. These findings underscore the importance of targeted professional development in strengthening assessment literacy and highlight persistent gaps between policy intentions and classroom realities. The study recommends sustained, context-relevant training to promote more effective and varied assessment practices in mathematics education.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.3.161
Pages: 161-177
cloud_download 65
visibility 480
0
Article Metrics
Views
65
Download
480
Citations
Crossref
0

...

Data from over 1,500 middle-grade mathematics students were used to investigate their mathematical affect and identity. Early secondary students were asked if they considered themselves mathematicians and a prompt was employed to substantiate their mathematical identity. Separating by gender and grade affiliation (6, 7, and 8), Chi-square and Z-score analyses were used to compare subgroups. Data show that the gap in male and female mathematics identity and affect is shrinking. Though progress has occurred in encouraging young women to consider themselves mathematicians, work remains. Consistent with previous research concerning the sustained and relatively permanent nature of mathematical affect/identity at grade six, in this study it appeared to become stable near grade 7 (approximately age 13). Perhaps not ironically, grade seven appears to be the age at which adolescents enter a period of successful abstract reasoning, and the age (13) aligns with the beginning of pre-algebra for many grades seven students.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.3.191
Pages: 193-209
cloud_download 20
visibility 134
0
Article Metrics
Views
20
Download
134
Citations
Crossref
0

...