'technology and teaching' Search Results
Factors Affecting Secondary School Students’ Interest to Learn Mathematics: A Review of Literature
in-class factor policy implications secondary school students’ interest teaching model approach to learn mathematics...
This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.
0
The Application of AI in Chemistry Learning: Experiences of Secondary School Students in Zimbabwe
artificial intelligence chemistry education curriculum integration educational technology student engagement...
This study investigated the integration of artificial intelligence (AI) tools into secondary school chemistry education in Zimbabwe, assessing their impact on student engagement and academic performance. Grounded in Vygotsky’s Sociocultural Theory and Cognitive Load Theory, the research employed a mixed-methods approach within a pragmatic framework. Quantitative data were collected through pre-test and post-test assessments and structured surveys, comparing an experimental group using AI tools with a control group employing traditional methods. Qualitative data from student and teacher interviews and classroom observations were analysed thematically. ANCOVA analysis revealed a statistically significant difference in post-test scores between the experimental and control groups, F (1, 117) = 188.86, p < .005, η² = 0.617, demonstrating a large effect size of AI integration on academic performance. Students in the experimental group exhibited a mean improvement of 20%, controlling for pre-test differences. Additionally, interaction effects between AI use and gender (F (1,115) = 0.17, p = .684) as well as prior chemistry knowledge (F (1,115) = 0.05, p = .829) were not statistically significant. Furthermore, 85% of the experimental group reported higher engagement levels, confirming AI’s role in fostering motivation and conceptual understanding. AI tools facilitated personalized learning paths, interactive simulations, and real-time feedback, optimizing cognitive efficiency and deep learning. Despite these advantages, significant challenges emerged, including limited internet access, insufficient technological resources, lack of teacher training, and curriculum integration difficulties. These barriers highlight the need for strategic investments in digital infrastructure, professional development for educators, and curriculum revisions to fully integrate AI into chemistry education. The findings underscore AI’s transformative potential in STEM education within developing nations. Addressing infrastructural and pedagogical challenges is critical to maximizing AI's impact, ensuring equitable access, and fostering long-term sustainability in educational innovation.
0
An Examination of the Interaction in Online Professional Development for Area Specialized Teaching
interaction mentor teachers online professional development (opd) science education teacher professional development...
This study explores how mentor teachers in specialized teaching areas, particularly chemistry, interact in an Online Professional Development (OPD) program. The Mentor Teacher Professional Development (MeT-PD) program was designed to improve mentoring practices by creating opportunities for collaborative learning through various online activities, such as Individual Response (IR), Interactive Individual Response (IIR), Small Group Discussions (SGD), and Large Group Discussions (LGD). Using a qualitative case study approach, the research analyzed data collected from Zoom recordings and Nearpod activity logs. The findings indicate that while LGDs were useful for interactions between facilitators and learners, they were not as effective in fostering interaction among learners themselves, mainly due to the cognitive demands and how these discussions were structured. On the other hand, SGDs seemed to foster stronger participant interaction, probably because the smaller group settings led to more valuable exchanges. These findings highlight the need of thoughtful planning of OPD activities, with particular focus on group size management and selection of suitable discussion formats to improve both interaction and learning outcomes.
0
Analysis of Students’ Academic Performance in Mathematics Across Specific Topic Areas in Selected Lower Secondary Schools in Rwanda
lower secondary schools mathematics performance quantitative research topic-based analysis...
In this study, a topic-based analysis of students’ academic performance in mathematics across specific topic areas in selected lower secondary schools in Rwanda was conducted. The research examined third-term exam scripts (2022-2023 and 2023-2024) of 267 Senior One (S1) and Senior Two (S2) students at Groupe Scolaire Rushara, Groupe Scolaire Sheli, and Groupe Scolaire Nyarugugu, along with data from their eight mathematics teachers. A quantitative approach was employed using ANOVA to compare students’ performance across five key mathematics topics: algebra, metric measurement, proportional reasoning, geometry, and statistics and probability. The findings revealed significant improvement in statistics and probability (p =.000, η² = 0.293) and geometry (p =.000, η² = 0.178) between S1 and S2 students. In contrast, metric measurement showed no significant difference (p =.234, η² = 0.003), while algebra demonstrated minimal improvement (p =.050, η² = 0.007). Proportional reasoning showed moderate progress (p =.000, η² = 0.057), although students continued to struggle with applying proportional relationships. These results indicate that while notable gains were made in some areas, others require targeted pedagogical interventions to improve students’ conceptual understanding and performance in mathematics. The study underscores the importance of adaptive teaching strategies, enhanced instructional materials, and a more student-centered approach to mathematics education in lower secondary schools in Rwanda.
0