logo logo European Journal of Mathematics and Science Education

EJMSE is a leading, peer-reviewed research journal based in the UK that provides an online forum for studies in mathematics and science education.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

'measurement in the context' Search Results



...

This article presents an international study that documented the conceptions of atomic models held by 1062 in-service high school science teachers from 58 countries. First, a previous study on pre-service science teachers’ conceptions of atomic models was successfully replicated as a pilot study with an international sample of in-service science teachers. Teachers’ conceptions were investigated by analysing their drawings of atomic models. Based on these results, a multiple-choice questionnaire was developed for the main study. This questionnaire collected data on teachers’ conceptions of atomic models, teachers’ knowledge about their students’ conceptions of atomic models, and teachers’ use of atomic models in the classroom. The results show that the teachers’ conceptions of atomic models are almost evenly distributed over six different atomic models. These models are the Bohr model, the Rutherford model, the probability model, the orbital model, the probability orbit model, and the wave model. The vast majority of teachers assume that their students’ conceptions are centred on two historical atomic models, namely the Bohr model and the Rutherford model. Furthermore, the majority of teachers prefer to use historical atomic models over modern atomic models in the classroom. However, the findings also highlight that the use of modern atomic models in the classroom is positively correlated with growing teaching experience, and that teachers’ conceptions of atomic models and their knowledge of students’ conceptions of atomic models significantly influence teachers’ classroom practice.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.1.2.67
Pages: 67-80
cloud_download 1999
visibility 5372
8
Article Metrics
Views
1999
Download
5372
Citations
Crossref
8

...

The diversity of definitions of science literacy has resulted in a diversity of measurement tools. However, adult science literacy is mainly assessed on short standardized and non-contextualized questions, thus making the study of adult science literacy more qualitative than quantitative. Here we describe the rationale, development, and validation of a questionnaire that associates the use of science in the specific science-related setting of parents of hard of hearing children with general and topic-specific science knowledge. The questionnaire went through four developmental steps: (1) gathering input from hearing rehabilitation experts and parents, (2) testing the close-ended questionnaire (n=10), (3) open-ended questionnaire (n=24), (4) online close-ended questionnaire (n=91). These all assessed general science knowledge, contextual science knowledge in the field of hearing and parents' advocacy knowledge and attitudes. These steps and the resulting assessment tool can thus inform the further development of measures of adult science literacy in context. The findings suggest that although general science knowledge enables the application of science to everyday science-related problems it only explained a small proportion of the variance in contextual science knowledge. Thus, the results strongly point to the importance of measuring adults' science literacy in a context that is relevant to the responders. The findings also underscored the disappointing outcomes of secondary science education, in that formal scientific background predicted general science knowledge but did not account for contextual science knowledge at all. This should elicit concern as to the ability of students to use science knowledge in future personally important science related contexts.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.1.29
Pages: 29-47
cloud_download 250
visibility 1097
0
Article Metrics
Views
250
Download
1097
Citations
Crossref
0

...

The ability of students to build problem-solving models using procedural knowledge can be viewed from several aspects, including Mastery of Mathematical Problem Solving (MPS), understanding concepts and application of concepts, the relationship between learning outcomes of mathematics and interest in learning, and examine the contribution of the ability to understand concept problems, the application of concepts to the ability of MPS, as well as student difficulties and some of the advantages of students in solving problems. This experimental study aims to explain the effect of the MPS model using procedural knowledge on solving mathematical problems for Junior High School Students (JHSS). The findings showed that 1) The MPS method using procedural knowledge significantly improved learning outcomes, but the mastery of MPS for JHSS was still unsatisfactory. 2) MPS teaching could still not improve meaningful learning outcomes. However, when JHSS applied the concepts, calculations, and problem-solving aspects, MPS teaching improved meaningful learning outcomes. 3) Students' interest in learning mathematics in the two sample classes was classified as positive. Shortly, MPS teaching accustoms students to think systematically and creatively and not just give up on the problems they face.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.4.2.95
Pages: 95-109
cloud_download 456
visibility 1513
0
Article Metrics
Views
456
Download
1513
Citations
Crossref
0

Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues

big science covid-19 learning enjoyment learning interest socio-scientific issues

Brady Michael Jack , Chi-Chen Chen , Hsin-Hui Wang , Thomas J. Smith


...

Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.121
Pages: 121-133
cloud_download 195
visibility 996
0
Article Metrics
Views
195
Download
996
Citations
Crossref
0

...

This study examines the validity of the Force Concept Inventory (FCI) in Ugandan secondary schools using Item Response Curves (IRCs) and provides a comparative evaluation of its effectiveness across different educational contexts. The survey focused on Senior Four students preparing for the Uganda Certificate of Education (UCE) examinations, with a representative sample of 941 students (aged 15–17) selected through a multi-stage sampling technique. The initial analysis employed Classical Test Theory (CTT) metrics before the detailed analysis of IRCs for the FCI items. The CTT evaluates item-level and whole test statistics like item difficulty level, discrimination index, and reliability. The CTT indices revealed that the FCI was highly challenging, with an average score of 5.76 out of 30 and a low-reliability coefficient (α = 0.15). Additionally, 73.3% of the items showed poor discrimination, and some distractors were ineffective. The detailed analysis of IRCs showed that several FCI items are inefficient in the context of the Ugandan education system. The IRCs also demonstrated a widespread choice of distractors for many items, with overall scores falling below the threshold indicative of a generally agreed-upon understanding of Newtonian physics. Comparative analysis from other global contexts studies suggests that language barriers, curriculum differences, and instructional methods influence student performance. These findings underscore the necessity of adapting the FCI tool to better fit local educational contexts and implementing additional instructional strategies to enhance conceptual understanding. A more culturally and contextually adapted diagnostic tool may improve physics education and better assess students’ conceptual comprehension of force and motion within the region.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.79
Pages: 79-95
cloud_download 122
visibility 789
0
Article Metrics
Views
122
Download
789
Citations
Crossref
0

...

In this study, a topic-based analysis of students’ academic performance in mathematics across specific topic areas in selected lower secondary schools in Rwanda was conducted. The research examined third-term exam scripts (2022-2023 and 2023-2024) of 267 Senior One (S1) and Senior Two (S2) students at Groupe Scolaire Rushara, Groupe Scolaire Sheli, and Groupe Scolaire Nyarugugu, along with data from their eight mathematics teachers. A quantitative approach was employed using ANOVA to compare students’ performance across five key mathematics topics: algebra, metric measurement, proportional reasoning, geometry, and statistics and probability. The findings revealed significant improvement in statistics and probability (p =.000, η² = 0.293) and geometry (p =.000, η² = 0.178) between S1 and S2 students. In contrast, metric measurement showed no significant difference (p =.234, η² = 0.003), while algebra demonstrated minimal improvement (p =.050, η² = 0.007). Proportional reasoning showed moderate progress (p =.000, η² = 0.057), although students continued to struggle with applying proportional relationships. These results indicate that while notable gains were made in some areas, others require targeted pedagogical interventions to improve students’ conceptual understanding and performance in mathematics. The study underscores the importance of adaptive teaching strategies, enhanced instructional materials, and a more student-centered approach to mathematics education in lower secondary schools in Rwanda.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.3.147
Pages: 147-159
cloud_download 31
visibility 219
0
Article Metrics
Views
31
Download
219
Citations
Crossref
0

...