'national curriculum' Search Results
Impact of the African Institute for Mathematical Science Teacher Training Program on Students’ Interest to Learn Mathematics and Science, Rwanda
continuous professional development innovative methodologies mathematics and science-education peer learning students’ industry visits...
This study examined the impact of the Rwanda African Institute for Mathematical Science, Teacher Training Program (AIMS-TTP) on 228 secondary school students’ interest to learn Mathematics and science taught by 7058-trained teachers over 5-years across 14 districts. Students were exposed to various AIMS-TTP interventions, including industrial visits, science hours, and international day for women and girls in science, mathematics competition, robotics and mathematics challenge, and the Pan African Mathematics Olympiad (PAMO). A survey research design was employed to collect data about students’ interest to learn Mathematics and science, and data on students’ choices of combinations were obtained from the National Examination and School Inspection Authority (NESA) for the academic years 2017 to 2022. Data analysis using bivariate correlation and regression analyses revealed a positive and significant relationship (p<.05) between AIMS-TTP interventions and students’ interest to learn Mathematics and science. Besides, linear regression model indicated that hands-on activities, exposure to mathematics and science role models, science hour and smart classroom were the best predictors of students’ interest to learn mathematics and science (β=.197, p< .05; β=.217, p<.05; β=.234, p< .05; and β=.218, p<.05 respectively). They contributed 66.7 % (Adjusted, R2 = .667, p < .05) of the variance in students’ interest in learning mathematics and science. The AIMS-TTP interventions significantly improved students’ interest to learning mathematics and science. Recommendations include comprehensive training programs with direct student engagement, diverse competitions, and ongoing teacher support through professional development. Future research should focus on students’ STEM interest in Technical, Vocational Education, and Training schools.
0
Namibian Teachers’ Behavioural Intentions on Students’ Mathematics Learning Using Their Own Devices
behavioural intention mathematics perceived ease of use perceived usefulness price value...
Bring your own device (BYOD) policy implementation in schools worldwide has allowed students to learn subjects, including mathematics, using personal mobile devices (PMDs). PMD use has enhanced students’ mathematics enjoyment by bridging the gap between theoretical mathematics concepts and their practical applications, which makes mathematics more meaningful and leads to improved results. Nonetheless, students in Namibian basic education are not authorised to learn with PMDs in school. While students’ PMD use in school remains a topic of debate, there remains a need to investigate its impact on students’ mathematics learning and teachers’ perceptions of BYOD in mathematics classrooms. This study evaluated the perceptions and intentions of 209 Namibian mathematics teachers from the Omusati and Khomas regions regarding students’ mathematics learning using PMDs in schools. Data were collected through an online survey. A structural equation model revealed teachers’ positive intentions towards students’ use of PMDs through BYOD in learning mathematics in school. Perceived usefulness (PU), perceived ease of use (PEoU), and price value (PV) factors directly affected the teachers’ behavioural intentions (BI) towards students learning mathematics through BYOD. PEoU significantly affected teachers’ PU, and PV significantly affected teachers’ PEoU and PU. PU significantly mediated the relationship between PEoU and teachers’ intentions. PV significantly indirectly affected teachers’ intentions through PU. PEoU non-significantly mediated the PV and intention relationship. Practical implications are discussed, and recommendations are offered for the Namibian Ministry of Education, Arts and Culture and teacher training institutions.
2
Flipped Classroom Model: Minimizing Gaps in Understanding Mathematical Concepts for Students with Different Academic Abilities
academic abilities flipped classroom gaps in understanding concepts problem-based learning...
Each student has a different amount of time to fully understand information, students with high academic ability (UA) need less time than students with low academic ability (LA). Teachers should apply learning models that can facilitate their study time according to their individual needs. The aim of this research is to assess which learning model is most optimal in reducing the gap in understanding mathematical concepts between UA and LA students. Apart from that, this research also evaluates the effectiveness of implementing the flipped class (FC) model in increasing students' understanding of mathematical concepts, compared to the problem-based learning (PBL) model and conventional learning models. The research method used was the N-Gain Test and ANCOVA. The research results show that the FC model is the most optimal in reducing the gap in understanding mathematical concepts between LA and UA students. In addition, both FC and PBL models have proven effective in increasing students' understanding of mathematical concepts when compared to conventional models. Future research could consider combining the FC model with PBL or other learning models to see whether combining these models can improve students' understanding of mathematical concepts more significantly.
0
Understanding Problem-Based Learning and its Application in Learning Mathematics Concepts Among Pre-Service Teachers
mathematics education problem-based learning small-group activity...
Learning to teach mathematics has become crucial since its application in real life cannot go unmentioned. The desire of mathematics education researchers to make mathematics concepts easier for pre-service teachers to easily understand has attracted attention. This has become indispensable since after college, pre-service teachers are deployed from K-12 to assist learners in understanding mathematics concepts. The study aimed to ascertain how improvement in the learning of mathematics concepts using the Problem-based learning (PBL) approach could be understood and/or explained among pre-service teachers. This was viewed in two folds: how improvement in learning outcomes using the PBL approach could be explained; and how pre-service teachers’ disposition about the PBL could be explained/understood. Exploratory case study design involving qualitative and quantitative data was concurrently gathered and used. This involved the use of data collection instruments such as focus group discussion, pre-post-test scores, PBL observation protocol, and PBL disposition questionnaire. The study showed that the PBL method improved the learning of mathematics concepts among pre-service teachers. Pre-service teachers also showed a positive disposition (interest, belief, and attitude) toward the PBL intervention. The authors advocated for the conduct of a longitudinal study to understand the direction of change over time.
0
Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues
big science covid-19 learning enjoyment learning interest socio-scientific issues...
Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded.
0
How Early Childhood Preservice Teachers Choose Mathematics and Science Content Standards: The Impact of Classroom Experience and Observation
early childhood teacher education mathematics and science education preservice teacher education standards...
We aimed to explore how Early Childhood (EC) preservice teachers (PSTs) choose and apply content-specific mathematics and science standards by analyzing two sets of lesson plans and two transcripts from whole class discussions from an EC mathematics and science methods course. From our analyses, we identified major themes and explanatory categories that indicated issues related to PSTs’ standards selection process. Students’ reasoning about their choices illustrated the resiliency of their beliefs about teaching and learning EC mathematics and science, and how their own observation experiences prevailed over our explicit instruction and assignment expectations. Drawing from literature related to Lortie’s (1975) Apprenticeship of Observation, we use our findings to consider ways to better appreciate and mitigate the strength of PSTs’ incoming beliefs on their readiness to plan for and implement lessons.
0
Mathematics Teachers’ Conceptions of the Theory of Multiple Intelligences: A Case Study in Ghana
inclusion and diversity multiple intelligences teacher knowledge...
Understanding and handling diversity, as well as inclusion, are critical in ensuring effective teaching and learning, especially in the mathematics classroom, where students have varied abilities. Despite the growing research in inclusive education, little is known about how mathematics teachers in the Ghanaian context understand the theory of multiple intelligences (MIs), leaving a gap in how this theory can be applied in the classroom to improve practice and inclusion. In this study, the authors explored Ghanaian mathematics teachers’ conceptions of the theory of MIs using a basic qualitative method design. 12 senior high school mathematics teachers in one municipality of Ghana were engaged through questionnaires and semi-structured interviews, including field notes, to provide information on their conceptions of the theory of MIs. Thematic analysis revealed that mathematics teachers conceived the theory of MIs as a theory of different styles for learning, multiple teaching strategies, and a theory for catering to diverse student needs. The findings highlight the need for professional development and teacher training curriculum development to enhance teachers' understanding of the theory of MIs to improve their practice and handling of inclusiveness and diversity in the classroom.
0
Factors Affecting Secondary School Students’ Interest to Learn Mathematics: A Review of Literature
in-class factor policy implications secondary school students’ interest teaching model approach to learn mathematics...
This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.
0
Effects of Mathematics Teaching Styles on Students’ Performance: Moderations of Gender, School Type, Location, and Ability Group
achievement considerateness openness rigid teaching styles...
Global concern surrounds students' mathematics learning, development, and achievement. Scholarly discussions have explored various factors influencing students' mathematics performance. However, more information is needed to understand the impact of mathematics teaching styles on student outcomes in developing contexts like Nepal. This study examines the moderators of mathematics teaching styles and their influence on students' performance. To achieve this, the Teachers' Teaching Style Questionnaire (TTSQ) collected quantitative data from 469 grade nine students across 14 high schools in Kathmandu, Lalitpur, and Bhaktapur districts of Nepal. Confirmatory factor analysis, path analysis, and moderation analysis were performed to examine the effects of teaching styles on student achievement in mathematics. Key findings indicate that teaching styles, such as consideration and openness, are not significant predictors of student achievement, but rigid teaching styles can predict student achievement in mathematics. However, impact of the rigid teaching style was negative on student achievement. School type influenced the relationship between performance and considerate teaching, favoring private schools. School location influenced the relationship between considerate teaching and student performance in mathematics, favoring rural schools. Likewise, urban schools had a negative effect on the relationship between teacher openness and student performance, but rural schools had a positive effect on their relationship. Furthermore, low and high-ability students moderated the relationship between considerate teaching and student achievement, with the negative effect of low ability on considerate teaching and student performance and the positive influence of high ability on considerate teaching and student achievement. Student ability influenced the relationship between teacher openness and student performance, with a negative moderations of low and moderate ability students. The study concludes by emphasizing the importance of teacher training in teaching styles for high schools in Nepal and similar contexts.
0
A Comparison of Indonesia and Singapore Secondary School Textbooks of Mathematics: A Praxeological Analysis of Cube and Cuboid Task Design
comparison of indonesia and singapore praxeology analysis task design...
Comparison of mathematics textbooks between Indonesia and Singapore is one way to assess the educational process. This article provides insight into how mathematical concepts are taught and applied in problem-solving in each country. The study provides knowledge about how mathematical concepts are constructed by teachers and students and implemented in problem-solving between countries. This study aims to compare task designs in high school mathematics textbooks between Indonesia and Singapore based on the type of task, technique, technology, and theory used, with a focus on cubes and cuboids. The comparative analysis of the two books uses praxeological theory, the main construction of Didactic Anthropology Theory, with reference to epistemological model (REM) model analysis. The research results show that there are differences in the approaches, methods, and habits used in task design in the two countries. The techniques, technology and theories found in the two task designs show that Indonesian mathematics textbooks use more verification and drawing up conclusions which are influenced by perceptual techniques. Meanwhile, the task of designing Singapore's mathematics textbooks involves more direct investigations into forming students' knowledge through physical and operational techniques. The techniques, technology, and theories used in both designs influence the number of learning obstacles. Epistemological constraints occur in Indonesian textbooks and only a few in Singapore textbooks. These findings provide insight into how to build mathematical knowledge for students through good assignment design based on a country's educational character.
0
Storytelling: A Teaching Technique to Infuse Indigenous Knowledge in Physical Science Pre-service Teacher Training
indigenous knowledge participatory action and learning research physical science project-based - and contextualised learning storytelling...
The infusion of indigenous knowledge in academic subjects is often problematic due to personal perceptions or little experience with indigenous knowledge in a teaching and learning environment. The aim of the research was to indicate the experiences of pre-service teachers when infusing indigenous knowledge via storytelling in Physical Science. This article reports on the personal experience(s) of pre-service teachers in training at a higher education institution where indigenous knowledge was infused into the teaching and learning of Physical Sciences. The implementation of Ethnophysics as a teaching strategy, storytelling as a teaching technique, contextualised - and project-based learning as teaching methods and approaches and reflection on experiences when implementing participatory action learning and action research indicated a transformative way to embrace indigenous knowledge in the teaching and learning of Physical Science. Stories, related to the concept of heat in physical science were collected by the pre-service teachers from trusted adult members in their local communities. The pre-service teachers analysed the stories and reported their interpretation of scientific and indigenous knowledge in the stories. Inductive, thematic analysis was used to interpret pre-service teacher reflection on the experience and the Cultural Historical Activity Theory was used to indicate an overview and the connection between different elements of the research. The participating pre-service teachers indicated that storytelling, as a teaching technique, adds value to how they interpret concepts in Physical Science related to their unique culture. The pre-service teachers gained research skills regarding qualitative research and showed the ability to identify the contribution of both scientific and indigenous knowledge.
0